Exploring the Feasibility of Automated Data Standardization using Large Language Models for Seamless Positioning
- URL: http://arxiv.org/abs/2408.12080v1
- Date: Thu, 22 Aug 2024 02:40:21 GMT
- Title: Exploring the Feasibility of Automated Data Standardization using Large Language Models for Seamless Positioning
- Authors: Max J. L. Lee, Ju Lin, Li-Ta Hsu,
- Abstract summary: We propose a feasibility study for real-time automated data standardization leveraging Large Language Models (LLMs)
Our study ensures data compatibility and improves positioning accuracy using the Extended Kalman Filter (EKF)
This study underscores the potential of advanced LLMs in overcoming sensor data integration complexities.
- Score: 10.200170217746136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a feasibility study for real-time automated data standardization leveraging Large Language Models (LLMs) to enhance seamless positioning systems in IoT environments. By integrating and standardizing heterogeneous sensor data from smartphones, IoT devices, and dedicated systems such as Ultra-Wideband (UWB), our study ensures data compatibility and improves positioning accuracy using the Extended Kalman Filter (EKF). The core components include the Intelligent Data Standardization Module (IDSM), which employs a fine-tuned LLM to convert varied sensor data into a standardized format, and the Transformation Rule Generation Module (TRGM), which automates the creation of transformation rules and scripts for ongoing data standardization. Evaluated in real-time environments, our study demonstrates adaptability and scalability, enhancing operational efficiency and accuracy in seamless navigation. This study underscores the potential of advanced LLMs in overcoming sensor data integration complexities, paving the way for more scalable and precise IoT navigation solutions.
Related papers
- SensorLLM: Aligning Large Language Models with Motion Sensors for Human Activity Recognition [9.072495000412943]
We bridge the gap between wearable sensor technology and personalized AI assistants by enabling Large Language Models (LLMs) to understand time-series tasks like human activity recognition (HAR)
We introduce SensorLLM, a two-stage framework to unlock LLMs' potential for sensor data tasks.
We show that SensorLLM evolves into an effective sensor learner, reasoner, and learner, enabling it to generalize across diverse datasets for HAR tasks.
arXiv Detail & Related papers (2024-10-14T15:30:41Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
This paper introduces INTELLECT, a novel solution that integrates feature selection, model pruning, and fine-tuning techniques into a cohesive pipeline for the dynamic adaptation of pre-trained ML models and configurations for IDSs.
We demonstrate the advantages of incorporating knowledge distillation techniques while fine-tuning, enabling the ML model to consistently adapt to local network patterns while preserving historical knowledge.
arXiv Detail & Related papers (2024-07-17T22:34:29Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Unsupervised Federated Optimization at the Edge: D2D-Enabled Learning without Labels [14.696896223432507]
Federated learning (FL) is a popular solution for distributed machine learning (ML)
tt CF-CL employs local device cooperation where either explicit (i.e., raw data) or implicit (i.e., embeddings) information is exchanged through device-to-device (D2D) communications.
arXiv Detail & Related papers (2024-04-15T15:17:38Z) - A Plug-in Tiny AI Module for Intelligent and Selective Sensor Data
Transmission [10.174575604689391]
We propose a novel sensing module to equip sensing frameworks with intelligent data transmission capabilities.
We integrate a highly efficient machine learning model placed near the sensor.
This model provides prompt feedback for the sensing system to transmit only valuable data while discarding irrelevant information.
arXiv Detail & Related papers (2024-02-03T05:41:39Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - SensiX++: Bringing MLOPs and Multi-tenant Model Serving to Sensory Edge
Devices [69.1412199244903]
We present a multi-tenant runtime for adaptive model execution with integrated MLOps on edge devices, e.g., a camera, a microphone, or IoT sensors.
S SensiX++ operates on two fundamental principles - highly modular componentisation to externalise data operations with clear abstractions and document-centric manifestation for system-wide orchestration.
We report on the overall throughput and quantified benefits of various automation components of SensiX++ and demonstrate its efficacy to significantly reduce operational complexity and lower the effort to deploy, upgrade, reconfigure and serve embedded models on edge devices.
arXiv Detail & Related papers (2021-09-08T22:06:16Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - From Data to Actions in Intelligent Transportation Systems: a
Prescription of Functional Requirements for Model Actionability [10.27718355111707]
This work aims to describe how data, coming from diverse ITS sources, can be used to learn and adapt data-driven models for efficiently operating ITS assets, systems and processes.
Grounded in this described data modeling pipeline for ITS, wedefine the characteristics, engineering requisites and intrinsic challenges to its three compounding stages, namely, data fusion, adaptive learning and model evaluation.
arXiv Detail & Related papers (2020-02-06T12:02:30Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.