論文の概要: uMedSum: A Unified Framework for Advancing Medical Abstractive Summarization
- arxiv url: http://arxiv.org/abs/2408.12095v1
- Date: Thu, 22 Aug 2024 03:08:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 15:23:41.556195
- Title: uMedSum: A Unified Framework for Advancing Medical Abstractive Summarization
- Title(参考訳): uMedSum: 医学的抽象的な要約を促進する統一フレームワーク
- Authors: Aishik Nagar, Yutong Liu, Andy T. Liu, Viktor Schlegel, Vijay Prakash Dwivedi, Arun-Kumar Kaliya-Perumal, Guna Pratheep Kalanchiam, Yili Tang, Robby T. Tan,
- Abstract要約: 現在の方法では、重要な情報を忠実に犠牲にしたり、情報提供の優先順位付けを行うときに信条を導入する場合が多い。
本稿では,5つの標準メトリクスを用いて,3つの多様なデータセットにまたがる6つの高度な抽象的要約手法のベンチマークを示す。
本稿では, 逐次的な断片化除去に新たなアプローチを導入し, 鍵を欠いた情報追加を行うモジュール型ハイブリッド要約フレームワーク uMedSum を提案する。
- 参考スコア(独自算出の注目度): 23.173826980480936
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical abstractive summarization faces the challenge of balancing faithfulness and informativeness. Current methods often sacrifice key information for faithfulness or introduce confabulations when prioritizing informativeness. While recent advancements in techniques like in-context learning (ICL) and fine-tuning have improved medical summarization, they often overlook crucial aspects such as faithfulness and informativeness without considering advanced methods like model reasoning and self-improvement. Moreover, the field lacks a unified benchmark, hindering systematic evaluation due to varied metrics and datasets. This paper addresses these gaps by presenting a comprehensive benchmark of six advanced abstractive summarization methods across three diverse datasets using five standardized metrics. Building on these findings, we propose uMedSum, a modular hybrid summarization framework that introduces novel approaches for sequential confabulation removal followed by key missing information addition, ensuring both faithfulness and informativeness. Our work improves upon previous GPT-4-based state-of-the-art (SOTA) medical summarization methods, significantly outperforming them in both quantitative metrics and qualitative domain expert evaluations. Notably, we achieve an average relative performance improvement of 11.8% in reference-free metrics over the previous SOTA. Doctors prefer uMedSum's summaries 6 times more than previous SOTA in difficult cases where there are chances of confabulations or missing information. These results highlight uMedSum's effectiveness and generalizability across various datasets and metrics, marking a significant advancement in medical summarization.
- Abstract(参考訳): 医学的抽象的な要約は、忠実さと情報性のバランスをとるという課題に直面している。
現在の方法では、重要な情報を忠実に犠牲にしたり、情報提供の優先順位付けを行うときに信条を導入する場合が多い。
近年のICL(In-context Learning)や微調整( fine-tuning)といった手法の進歩は、医学的な要約を改善する一方で、モデル推論や自己改善といった高度な手法を考慮せずに、忠実さや情報提供といった重要な側面を見落としていることが多い。
さらに、フィールドには統一されたベンチマークがなく、さまざまなメトリクスやデータセットによる体系的な評価を妨げる。
本稿では,5つの標準化されたメトリクスを用いて,3つのデータセットにまたがる6つの高度な抽象的要約手法の総合的なベンチマークを提示することによって,これらのギャップに対処する。
これらの知見に基づいて, 逐次的な折り畳み除去に新たなアプローチを導入し, 鍵を欠いた情報追加を行い, 忠実さと情報提供性を両立させる, モジュール型ハイブリッド要約フレームワーク uMedSum を提案する。
本研究は,従来のGPT-4をベースとしたSOTA(State-of-the-art Medical summarization)法を改良し,定量的評価と定性的ドメインエキスパート評価の両面で有意な成績を示した。
特に,従来のSOTAよりも11.8%の参照なしメトリクスの相対的な性能向上を実現している。
uMedSumのサマリーが従来のSOTAより6倍多いと医師は考えている。
これらの結果は、uMedSumの有効性と様々なデータセットやメトリクスの一般化性を強調しており、医学的な要約の著しい進歩を示している。
関連論文リスト
- FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKIはデータのプライバシーを守るだけでなく、医療基盤モデルの能力を高める。
FEDMEKIは、医療ファンデーションモデルに対して、直接データを公開することなく、幅広い医療知識から学ぶことを可能にする。
論文 参考訳(メタデータ) (2024-08-17T15:18:56Z) - FedMedICL: Towards Holistic Evaluation of Distribution Shifts in Federated Medical Imaging [68.6715007665896]
FedMedICLは統合されたフレームワークであり、フェデレートされた医療画像の課題を全体評価するためのベンチマークである。
6種類の医用画像データセットについて,いくつかの一般的な手法を総合的に評価した。
単純なバッチ分散手法はFedMedICL実験全体の平均性能において,高度な手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-07-11T19:12:23Z) - Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges [2.1835659964186087]
本稿では,様々な医療データ型を合成するための生成モデルについて,体系的に検討する。
本研究は、幅広い医療データモダリティを包含し、様々な生成モデルについて検討する。
論文 参考訳(メタデータ) (2024-06-27T14:00:11Z) - Capabilities of Gemini Models in Medicine [100.60391771032887]
医療専門のマルチモーダルモデルであるMed-Geminiを紹介する。
メドジェニーニを14の医療ベンチマークで評価し,その内10に新たな最先端(SoTA)性能を確立した。
我々の結果は、Med-Geminiの可能性を示唆する証拠を提供するが、より厳密な評価は実世界の展開に先立って重要である。
論文 参考訳(メタデータ) (2024-04-29T04:11:28Z) - Zero-Shot Medical Information Retrieval via Knowledge Graph Embedding [27.14794371879541]
本稿では、ゼロショット医療情報検索(MIR)の新しいアプローチであるMedFusionRankを紹介する。
提案手法は、学習済みのBERTスタイルのモデルを用いて、コンパクトだが情報的なキーワードを抽出する。
これらのキーワードは、医療知識グラフ内の概念エンティティにリンクすることで、ドメイン知識に富む。
論文 参考訳(メタデータ) (2023-10-31T16:26:33Z) - A Meta-Evaluation of Faithfulness Metrics for Long-Form Hospital-Course
Summarization [2.8575516056239576]
病院入院の長期的臨床要約は、臨床医と患者の両方に役立つ可能性から、現実的な重要性を持っている。
本研究は,患者の短期病院講座のモデル作成要約に対して,人体アノテーションの微粒化に対する忠実度指標をベンチマークした。
論文 参考訳(メタデータ) (2023-03-07T14:57:06Z) - Adding more data does not always help: A study in medical conversation
summarization with PEGASUS [5.276054618115727]
PEGを用いた転帰学習医療会話要約におけるデータセットサイズの影響について検討した。
また,分類環境での成功を受けて,低データ体制における様々な反復的なラベル付け戦略の評価を行った。
我々の研究は、医療会話要約への分類における低データ体制技術の導入の成功と課題に光を当てている。
論文 参考訳(メタデータ) (2021-11-15T07:27:35Z) - How to Leverage Multimodal EHR Data for Better Medical Predictions? [13.401754962583771]
電子健康記録(EHR)データの複雑さは、ディープラーニングの適用の課題である。
本稿では,まずEHRから臨床ノートを抽出し,これらのデータを統合する方法を提案する。
2つの医療予測タスクの結果、異なるデータを持つ融合モデルが最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-10-29T13:26:05Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
本稿では,現実性評価指標を評価するメタ評価フレームワークGO FIGUREを紹介する。
10個の実測値のベンチマーク分析により、我々のフレームワークが堅牢で効率的な評価を提供することが明らかとなった。
また、QAメトリクスは、ドメイン間の事実性を測定する標準的なメトリクスよりも一般的に改善されているが、パフォーマンスは、質問を生成する方法に大きく依存していることも明らかにしている。
論文 参考訳(メタデータ) (2020-10-24T08:30:20Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。