論文の概要: Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges
- arxiv url: http://arxiv.org/abs/2407.00116v2
- Date: Tue, 2 Jul 2024 06:51:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 06:20:13.845196
- Title: Generative AI for Synthetic Data Across Multiple Medical Modalities: A Systematic Review of Recent Developments and Challenges
- Title(参考訳): 複数の医療モダリティにまたがる合成データのための生成AI:最近の展開と課題の体系的レビュー
- Authors: Mahmoud Ibrahim, Yasmina Al Khalil, Sina Amirrajab, Chang Sun, Marcel Breeuwer, Josien Pluim, Bart Elen, Gokhan Ertaylan, Michel Dumontier,
- Abstract要約: 本稿では,様々な医療データ型を合成するための生成モデルについて,体系的に検討する。
本研究は、幅広い医療データモダリティを包含し、様々な生成モデルについて検討する。
- 参考スコア(独自算出の注目度): 2.1835659964186087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a comprehensive systematic review of generative models (GANs, VAEs, DMs, and LLMs) used to synthesize various medical data types, including imaging (dermoscopic, mammographic, ultrasound, CT, MRI, and X-ray), text, time-series, and tabular data (EHR). Unlike previous narrowly focused reviews, our study encompasses a broad array of medical data modalities and explores various generative models. Our search strategy queries databases such as Scopus, PubMed, and ArXiv, focusing on recent works from January 2021 to November 2023, excluding reviews and perspectives. This period emphasizes recent advancements beyond GANs, which have been extensively covered previously. The survey reveals insights from three key aspects: (1) Synthesis applications and purpose of synthesis, (2) generation techniques, and (3) evaluation methods. It highlights clinically valid synthesis applications, demonstrating the potential of synthetic data to tackle diverse clinical requirements. While conditional models incorporating class labels, segmentation masks and image translations are prevalent, there is a gap in utilizing prior clinical knowledge and patient-specific context, suggesting a need for more personalized synthesis approaches and emphasizing the importance of tailoring generative approaches to the unique characteristics of medical data. Additionally, there is a significant gap in using synthetic data beyond augmentation, such as for validation and evaluation of downstream medical AI models. The survey uncovers that the lack of standardized evaluation methodologies tailored to medical images is a barrier to clinical application, underscoring the need for in-depth evaluation approaches, benchmarking, and comparative studies to promote openness and collaboration.
- Abstract(参考訳): 本稿では, 画像, マンモグラフィ, 超音波, CT, MRI, X線) , テキスト, 時系列, 表層データ (EHR) など, 様々な医療データ型を合成するために用いられる生成モデル (GAN, VAEs, DMs, LLMs) を総合的に検討した。
これまでの狭義のレビューとは異なり、我々の研究は幅広い医療データモダリティを包含し、様々な生成モデルを探究している。
我々の検索戦略は、2021年1月から2023年11月までの最近の研究に焦点を当てた、Scopus、PubMed、ArXivなどのデータベースをクエリする。
この期間は、これまで広く報道されてきたガン以外の最近の進歩を強調している。
本調査は,(1) 合成の応用と目的,(2) 生成技術,(3) 評価方法の3つの重要な側面から考察した。
臨床に有効な合成の応用を強調し、様々な臨床要件に対処するための合成データの可能性を実証する。
分類ラベルやセグメンテーションマスク,画像翻訳を取り入れた条件付きモデルが一般的である一方で,臨床知識や患者固有の文脈の活用にはギャップがあり,よりパーソナライズされた合成アプローチの必要性が示唆され,医療データの特異な特徴に対する生成的アプローチの調整の重要性が強調されている。
さらに、下流の医療AIモデルの検証や評価など、強化以上の合成データを使用することには、大きなギャップがある。
この調査は、医療画像に合わせた標準化された評価手法の欠如が臨床応用の障壁であることを明らかにし、オープンネスとコラボレーションを促進するための詳細な評価アプローチ、ベンチマーク、および比較研究の必要性を強調した。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - The Era of Foundation Models in Medical Imaging is Approaching : A Scoping Review of the Clinical Value of Large-Scale Generative AI Applications in Radiology [0.0]
放射線技師の不足に起因する社会問題は激化しており、人工知能は潜在的な解決策として強調されている。
最近出現する大規模生成AIは、大規模言語モデル(LLM)からマルチモーダルモデルへと拡張されている。
このスコーピングレビューは、大規模生成型AIアプリケーションの臨床的価値に関する既存の文献を体系的に整理する。
論文 参考訳(メタデータ) (2024-09-03T00:48:50Z) - EMERGE: Integrating RAG for Improved Multimodal EHR Predictive Modeling [22.94521527609479]
EMERGEは、マルチモーダルEHR予測モデリングの強化を目的とした、検索拡張生成駆動フレームワークである。
提案手法は,大規模言語モデルにより時系列データと臨床メモの両方からエンティティを抽出する。
抽出した知識は、患者の健康状態のタスク関連サマリーを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-27T10:53:15Z) - Zero-shot and Few-shot Generation Strategies for Artificial Clinical Records [1.338174941551702]
本研究は,Llama 2 LLMが患者情報を正確に反映した合成医療記録を作成する能力を評価するものである。
筆者らは,MIMIC-IVデータセットから得られたデータを用いて,現在史の物語を生成することに重点を置いている。
このチェーン・オブ・シークレットのアプローチにより、ゼロショットモデルが、ルージュのメトリクス評価に基づいて、微調整されたモデルと同等の結果が得られることが示唆された。
論文 参考訳(メタデータ) (2024-03-13T16:17:09Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - Next Visit Diagnosis Prediction via Medical Code-Centric Multimodal Contrastive EHR Modelling with Hierarchical Regularisation [0.0]
NECHOは,階層的正規化を伴う新しい医用コード中心のマルチモーダル・コントラスト学習フレームワークである。
まず, 医用コード, 人口統計, 臨床ノートを含む多面的情報をネットワーク設計を用いて統合する。
また,EHRデータの階層構造を学習するために,医療オントロジーにおける親レベル情報を用いてモダリティ固有のエンコーダを正規化する。
論文 参考訳(メタデータ) (2024-01-22T01:58:32Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
本稿では,胸部X線画像と関連する患者の人口統計情報を統合したマルチモーダルトランスフォーマーネットワークを提案する。
提案ネットワークは、畳み込みニューラルネットワークを用いて、CXRから視覚的特徴を抽出し、その視覚的特徴と患者の人口統計情報のセマンティックテキスト埋め込みを組み合わせたトランスフォーマーベースのエンコーダデコーダネットワークである。
論文 参考訳(メタデータ) (2023-11-18T14:52:26Z) - sEHR-CE: Language modelling of structured EHR data for efficient and
generalizable patient cohort expansion [0.0]
sEHR-CEは、異種臨床データセットの統合表現型化と分析を可能にするトランスフォーマーに基づく新しいフレームワークである。
大規模研究である英国バイオバンクのプライマリ・セカンダリ・ケアデータを用いてアプローチを検証する。
論文 参考訳(メタデータ) (2022-11-30T16:00:43Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
本研究では,非構造的トピック関連超音波レポート生成のための新しい因子的注意・埋め込みモデル(FAE-Gen)を提案する。
提案したFAE-Genは主に2つのモジュール、すなわちビュー誘導因子の注意とトピック指向因子の埋め込みから構成されており、異なるビューで均質および不均一な形態的特徴を捉えている。
論文 参考訳(メタデータ) (2022-03-12T15:24:03Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。