Cross-border Commodity Pricing Strategy Optimization via Mixed Neural Network for Time Series Analysis
- URL: http://arxiv.org/abs/2408.12115v1
- Date: Thu, 22 Aug 2024 03:59:52 GMT
- Title: Cross-border Commodity Pricing Strategy Optimization via Mixed Neural Network for Time Series Analysis
- Authors: Lijuan Wang, Yijia Hu, Yan Zhou,
- Abstract summary: Cross-border commodity pricing determines competitiveness and market share of businesses.
Time series data is of great significance in commodity pricing and can reveal market dynamics and trends.
We propose a new method based on the hybrid neural network model CNN-BiGRU-SSA.
- Score: 46.26988706979189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of global trade, cross-border commodity pricing largely determines the competitiveness and market share of businesses. However, existing methodologies often prove inadequate, as they lack the agility and precision required to effectively respond to the dynamic international markets. Time series data is of great significance in commodity pricing and can reveal market dynamics and trends. Therefore, we propose a new method based on the hybrid neural network model CNN-BiGRU-SSA. The goal is to achieve accurate prediction and optimization of cross-border commodity pricing strategies through in-depth analysis and optimization of time series data. Our model undergoes experimental validation across multiple datasets. The results show that our method achieves significant performance advantages on datasets such as UNCTAD, IMF, WITS and China Customs. For example, on the UNCTAD dataset, our model reduces MAE to 4.357, RMSE to 5.406, and R2 to 0.961, significantly better than other models. On the IMF and WITS datasets, our method also achieves similar excellent performance. These experimental results verify the effectiveness and reliability of our model in the field of cross-border commodity pricing. Overall, this study provides an important reference for enterprises to formulate more reasonable and effective cross-border commodity pricing strategies, thereby enhancing market competitiveness and profitability. At the same time, our method also lays a foundation for the application of deep learning in the fields of international trade and economic strategy optimization, which has important theoretical and practical significance.
Related papers
- Enhancing Exchange Rate Forecasting with Explainable Deep Learning Models [1.5474412217744966]
Traditional forecasting models often falter when addressing the inherent complexities and non-linearities of exchange rate data.
This study explores the application of advanced deep learning models, including LSTM, CNN, and transformer-based architectures, to enhance the predictive accuracy of the RMB/USD exchange rate.
arXiv Detail & Related papers (2024-10-25T01:29:54Z) - Jump Diffusion-Informed Neural Networks with Transfer Learning for Accurate American Option Pricing under Data Scarcity [1.998862666797032]
This study presents a comprehensive framework for American option pricing consisting of six interrelated modules.
The framework combines nonlinear optimization algorithms, analytical and numerical models, and neural networks to improve pricing performance.
The proposed model shows superior performance in pricing deep out-of-the-money options.
arXiv Detail & Related papers (2024-09-26T17:50:12Z) - Robust Utility Optimization via a GAN Approach [3.74142789780782]
We propose a generative adversarial network (GAN) approach to solve robust utility optimization problems.
In particular, we model both the investor and the market by neural networks (NN) and train them in a mini-max zero-sum game.
arXiv Detail & Related papers (2024-03-22T14:36:39Z) - A Bargaining-based Approach for Feature Trading in Vertical Federated
Learning [54.51890573369637]
We propose a bargaining-based feature trading approach in Vertical Federated Learning (VFL) to encourage economically efficient transactions.
Our model incorporates performance gain-based pricing, taking into account the revenue-based optimization objectives of both parties.
arXiv Detail & Related papers (2024-02-23T10:21:07Z) - An Auction-based Marketplace for Model Trading in Federated Learning [54.79736037670377]
Federated learning (FL) is increasingly recognized for its efficacy in training models using locally distributed data.
We frame FL as a marketplace of models, where clients act as both buyers and sellers.
We propose an auction-based solution to ensure proper pricing based on performance gain.
arXiv Detail & Related papers (2024-02-02T07:25:53Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Insurance pricing on price comparison websites via reinforcement
learning [7.023335262537794]
This paper introduces reinforcement learning framework that learns optimal pricing policy by integrating model-based and model-free methods.
The paper also highlights the importance of evaluating pricing policies using an offline dataset in a consistent fashion.
arXiv Detail & Related papers (2023-08-14T04:44:56Z) - Stock Market Price Prediction: A Hybrid LSTM and Sequential
Self-Attention based Approach [3.8154633976469086]
We propose a new model named Long Short-Term Memory (LSTM) with Sequential Self-Attention Mechanism (LSTM-SSAM)
We conduct extensive experiments on the three stock datasets: SBIN,BANK, and BANKBARODA.
The experimental results prove the effectiveness and feasibility of the proposed model compared to existing models.
arXiv Detail & Related papers (2023-08-07T14:21:05Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
We propose a framework named AutoMBPO to automatically schedule the real data ratio.
In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance.
arXiv Detail & Related papers (2021-11-16T15:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.