Utilizing RNN for Real-time Cryptocurrency Price Prediction and Trading Strategy Optimization
- URL: http://arxiv.org/abs/2411.05829v1
- Date: Tue, 05 Nov 2024 22:44:52 GMT
- Title: Utilizing RNN for Real-time Cryptocurrency Price Prediction and Trading Strategy Optimization
- Authors: Shamima Nasrin Tumpa, Kehelwala Dewage Gayan Maduranga,
- Abstract summary: This study explores the use of Recurrent Neural Networks (RNN) for real-time cryptocurrency price prediction and optimized trading strategies.
By leveraging RNNs' capability to capture long-term patterns in time-series data, this research aims to improve accuracy in price prediction and develop effective trading strategies.
- Score: 0.5524804393257919
- License:
- Abstract: This study explores the use of Recurrent Neural Networks (RNN) for real-time cryptocurrency price prediction and optimized trading strategies. Given the high volatility of the cryptocurrency market, traditional forecasting models often fall short. By leveraging RNNs' capability to capture long-term patterns in time-series data, this research aims to improve accuracy in price prediction and develop effective trading strategies. The project follows a structured approach involving data collection, preprocessing, and model refinement, followed by rigorous backtesting for profitability and risk assessment. This work contributes to both the academic and practical fields by providing a robust predictive model and optimized trading strategies that address the challenges of cryptocurrency trading.
Related papers
- Leveraging RNNs and LSTMs for Synchronization Analysis in the Indian Stock Market: A Threshold-Based Classification Approach [0.0]
Our research presents a new approach for forecasting the synchronization of stock prices using machine learning and non-linear time-series analysis.
We apply this methodology to a dataset of 20 highly capitalized stocks from the Indian market over a 21-year period.
The findings reveal that our approach can predict stock price synchronization, with an accuracy of 0.98 and F1 score of 0.83.
arXiv Detail & Related papers (2024-08-27T11:08:37Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative
Trading [0.0]
NoxTrader is a sophisticated system designed for portfolio construction and trading execution.
The underlying learning process of NoxTrader is rooted in the assimilation of valuable insights derived from historical trading data.
Our rigorous feature engineering and careful selection of prediction targets enable us to generate prediction data with an impressive correlation range between 0.65 and 0.75.
arXiv Detail & Related papers (2023-10-01T17:53:23Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Optimizing Stock Option Forecasting with the Assembly of Machine
Learning Models and Improved Trading Strategies [9.553857741758742]
This paper introduced key aspects of applying Machine Learning (ML) models, improved trading strategies, and the Quasi-Reversibility Method (QRM) to optimize stock option forecasting and trading results.
arXiv Detail & Related papers (2022-11-29T04:01:16Z) - DNN-ForwardTesting: A New Trading Strategy Validation using Statistical
Timeseries Analysis and Deep Neural Networks [0.6882042556551609]
We propose a new trading strategy, called DNN-forwardtesting, that determines the strategy to apply by testing it on the possible future predicted by a deep neural network.
Our trading system calculates the most effective technical indicator by applying it to the DNNs predictions and uses such indicator to guide its trades.
arXiv Detail & Related papers (2022-10-20T19:00:59Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - A Deep Learning Framework for Predicting Digital Asset Price Movement
from Trade-by-trade Data [20.392440676633573]
This paper presents a framework that predicts price movement of cryptocurrencies from trade-by-trade data.
The model is trained to achieve high performance on nearly a year of trade-by-trade data.
In a realistic trading simulation setting, the prediction made by the model could be easily monetized.
arXiv Detail & Related papers (2020-10-11T10:42:02Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.