Self-supervised Learning for Geospatial AI: A Survey
- URL: http://arxiv.org/abs/2408.12133v1
- Date: Thu, 22 Aug 2024 05:28:22 GMT
- Title: Self-supervised Learning for Geospatial AI: A Survey
- Authors: Yile Chen, Weiming Huang, Kaiqi Zhao, Yue Jiang, Gao Cong,
- Abstract summary: Self-supervised learning (SSL) has attracted increasing attention for its adoption in geospatial data.
This paper conducts a comprehensive and up-to-date survey of SSL techniques applied to or developed for three primary data (geometric) types prevalent in geospatial vector data.
- Score: 21.504978593542354
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of geospatial data in urban and territorial environments has significantly facilitated the development of geospatial artificial intelligence (GeoAI) across various urban applications. Given the vast yet inherently sparse labeled nature of geospatial data, there is a critical need for techniques that can effectively leverage such data without heavy reliance on labeled datasets. This requirement aligns with the principles of self-supervised learning (SSL), which has attracted increasing attention for its adoption in geospatial data. This paper conducts a comprehensive and up-to-date survey of SSL techniques applied to or developed for three primary data (geometric) types prevalent in geospatial vector data: points, polylines, and polygons. We systematically categorize various SSL techniques into predictive and contrastive methods, discussing their application with respect to each data type in enhancing generalization across various downstream tasks. Furthermore, we review the emerging trends of SSL for GeoAI, and several task-specific SSL techniques. Finally, we discuss several key challenges in the current research and outline promising directions for future investigation. By presenting a structured analysis of relevant studies, this paper aims to inspire continued advancements in the integration of SSL with GeoAI, encouraging innovative methods to harnessing the power of geospatial data.
Related papers
- Geode: A Zero-shot Geospatial Question-Answering Agent with Explicit Reasoning and Precise Spatio-Temporal Retrieval [0.0]
We introduce a pioneering system designed to tackle zero-shot geospatial question-answering tasks with high precision.
Our approach represents a significant improvement in addressing the limitations of current large language models.
arXiv Detail & Related papers (2024-06-26T21:59:54Z) - GeoAI Reproducibility and Replicability: a computational and spatial perspective [3.46924652750064]
This paper aims to provide an in-depth analysis of this topic from both computational and spatial perspectives.
We first categorize the major goals for reproducing GeoAI research, namely, validation (repeatability), learning and adapting the method for solving a similar or new problem (reproducibility), and examining the generalizability of the research findings (replicability)
We then discuss the factors that may cause the lack of R&R in GeoAI research, with an emphasis on (1) the selection and use of training data; (2) the uncertainty that resides in the GeoAI model design, training, deployment, and inference processes;
arXiv Detail & Related papers (2024-04-15T19:43:16Z) - Challenges in data-based geospatial modeling for environmental research
and practice [19.316860936437823]
Data-based geospatial modelling using machine learning (ML) has gained popularity in environmental research.
This survey reviews common nuances in geospatial modelling, such as imbalanced data, spatial autocorrelation, prediction errors, model generalisation, domain specificity, and uncertainty estimation.
arXiv Detail & Related papers (2023-11-18T12:30:49Z) - K2: A Foundation Language Model for Geoscience Knowledge Understanding
and Utilization [105.89544876731942]
Large language models (LLMs) have achieved great success in general domains of natural language processing.
We present the first-ever LLM in geoscience, K2, alongside a suite of resources developed to further promote LLM research within geoscience.
arXiv Detail & Related papers (2023-06-08T09:29:05Z) - On the Opportunities and Challenges of Foundation Models for Geospatial
Artificial Intelligence [39.86997089245117]
Foundations models (FMs) can be adapted to a wide range of downstream tasks by fine-tuning, few-shot, or zero-shot learning.
We propose that one of the major challenges of developing a FM for GeoAI is to address the multimodality nature of geospatial tasks.
arXiv Detail & Related papers (2023-04-13T19:50:17Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Graph-based Semi-supervised Learning: A Comprehensive Review [51.26862262550445]
Semi-supervised learning (SSL) has tremendous value in practice due to its ability to utilize both labeled data and unlabelled data.
An important class of SSL methods is to naturally represent data as graphs, which corresponds to graph-based semi-supervised learning (GSSL) methods.
GSSL methods have demonstrated their advantages in various domains due to their uniqueness of structure, the universality of applications, and their scalability to large scale data.
arXiv Detail & Related papers (2021-02-26T05:11:09Z) - A Survey on Heterogeneous Graph Embedding: Methods, Techniques,
Applications and Sources [79.48829365560788]
Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios.
HG embedding aims to learn representations in a lower-dimension space while preserving the heterogeneous structures and semantics for downstream tasks.
arXiv Detail & Related papers (2020-11-30T15:03:47Z) - Graph Signal Processing for Geometric Data and Beyond: Theory and
Applications [55.81966207837108]
Graph Signal Processing (GSP) enables processing signals that reside on irregular domains.
GSP methodologies for geometric data in a unified manner by bridging the connections between geometric data and graphs.
Recently developed Graph Neural Networks (GNNs) interpret the operation of these networks from the perspective of GSP.
arXiv Detail & Related papers (2020-08-05T03:20:16Z) - Data-driven geophysics: from dictionary learning to deep learning [3.6713387874278247]
"Model-driven" approaches to geophysics suffer from the curse of dimensionality and may inaccurately model the subsurface.
"Data-driven" techniques may overcome these issues with increasingly available geophysical data.
arXiv Detail & Related papers (2020-07-13T04:39:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.