Self-Organization in Computation & Chemistry: Return to AlChemy
- URL: http://arxiv.org/abs/2408.12137v2
- Date: Fri, 23 Aug 2024 04:26:16 GMT
- Title: Self-Organization in Computation & Chemistry: Return to AlChemy
- Authors: Cole Mathis, Devansh Patel, Westley Weimer, Stephanie Forrest,
- Abstract summary: In the 1990s Walter Fontana and Leo Buss proposed a novel modeling approach to this question, based on a formal model of calculus known as $lambda$.
Here, we revisit this classic model, called AlChemy, which has been understudied over the past thirty years.
We find that complex, stable organizations emerge more frequently than previously expected, that these organizations are robust against collapse into trivial fixed-points, but that these stable organizations cannot be easily combined into higher order entities.
- Score: 7.305979446312823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How do complex adaptive systems, such as life, emerge from simple constituent parts? In the 1990s Walter Fontana and Leo Buss proposed a novel modeling approach to this question, based on a formal model of computation known as $\lambda$ calculus. The model demonstrated how simple rules, embedded in a combinatorially large space of possibilities, could yield complex, dynamically stable organizations, reminiscent of biochemical reaction networks. Here, we revisit this classic model, called AlChemy, which has been understudied over the past thirty years. We reproduce the original results and study the robustness of those results using the greater computing resources available today. Our analysis reveals several unanticipated features of the system, demonstrating a surprising mix of dynamical robustness and fragility. Specifically, we find that complex, stable organizations emerge more frequently than previously expected, that these organizations are robust against collapse into trivial fixed-points, but that these stable organizations cannot be easily combined into higher order entities. We also study the role played by the random generators used in the model, characterizing the initial distribution of objects produced by two random expression generators, and their consequences on the results. Finally, we provide a constructive proof that shows how an extension of the model, based on typed $\lambda$ calculus, could simulate transitions between arbitrary states in any possible chemical reaction network, thus indicating a concrete connection between AlChemy and chemical reaction networks. We conclude with a discussion of possible applications of AlChemy to self-organization in modern programming languages and quantitative approaches to the origin of life.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Response Matching for generating materials and molecules [0.0]
We present a novel generative method called Response Matching (RM)
RM exploits the locality of atomic interactions, and inherently respects permutation, translation, rotation, and periodic invariances.
We demonstrate the efficiency and generalization of RM across three systems.
arXiv Detail & Related papers (2024-05-15T03:08:21Z) - Shape Arithmetic Expressions: Advancing Scientific Discovery Beyond Closed-Form Equations [56.78271181959529]
Generalized Additive Models (GAMs) can capture non-linear relationships between variables and targets, but they cannot capture intricate feature interactions.
We propose Shape Expressions Arithmetic ( SHAREs) that fuses GAM's flexible shape functions with the complex feature interactions found in mathematical expressions.
We also design a set of rules for constructing SHAREs that guarantee transparency of the found expressions beyond the standard constraints.
arXiv Detail & Related papers (2024-04-15T13:44:01Z) - Autonomous Learning of Generative Models with Chemical Reaction Network
Ensembles [0.0]
We develop a general architecture whereby a broad class of chemical systems can autonomously learn complex distributions.
Our construction takes the form of a chemical implementation of machine learning's optimization workhorse: gradient descent on the relative entropy cost function.
arXiv Detail & Related papers (2023-11-02T03:46:23Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
We develop a unified crystal representation that can represent any crystal structure (UniMat)
UniMat can generate high fidelity crystal structures from larger and more complex chemical systems.
We propose additional metrics for evaluating generative models of materials.
arXiv Detail & Related papers (2023-10-18T15:49:39Z) - Exploring Complex Dynamical Systems via Nonconvex Optimization [0.0]
We present an alternative, optimization-driven approach using tools from machine learning.
We apply this approach to a novel, fully-optimizable, reaction-diffusion model which incorporates complex chemical reaction networks.
This allows us to systematically identify new states and behaviors, including pattern formation, dissipation-maximizing nonequilibrium states, and replication-like dynamical structures.
arXiv Detail & Related papers (2023-01-03T01:35:39Z) - Neural-network solutions to stochastic reaction networks [7.021105583098606]
We propose a machine-learning approach using the variational autoregressive network to solve the chemical master equation.
The proposed approach tracks the time evolution of the joint probability distribution in the state space of species counts.
We demonstrate that it accurately generates the probability distribution over time in the genetic toggle switch and the early life self-replicator.
arXiv Detail & Related papers (2022-09-29T07:27:59Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Combinatory Chemistry: Towards a Simple Model of Emergent Evolution [0.0]
Combinatory Chemistry is an Algorithmic Artificial Chemistry based on a minimalistic computational paradigm named Combinatory Logic.
Our experiments show that a single run of this dynamical system with no external intervention discovers a wide range of emergent patterns.
arXiv Detail & Related papers (2020-03-17T19:55:58Z) - Retrosynthesis Prediction with Conditional Graph Logic Network [118.70437805407728]
Computer-aided retrosynthesis is finding renewed interest from both chemistry and computer science communities.
We propose a new approach to this task using the Conditional Graph Logic Network, a conditional graphical model built upon graph neural networks.
arXiv Detail & Related papers (2020-01-06T05:36:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.