How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression?
- URL: http://arxiv.org/abs/2310.08391v2
- Date: Fri, 15 Mar 2024 02:01:17 GMT
- Title: How Many Pretraining Tasks Are Needed for In-Context Learning of Linear Regression?
- Authors: Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, Peter L. Bartlett,
- Abstract summary: Transformers pretrained on diverse tasks exhibit remarkable in-context learning (ICL) capabilities.
We study ICL in one of its simplest setups: pretraining a linearly parameterized single-layer linear attention model for linear regression.
- Score: 92.90857135952231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers pretrained on diverse tasks exhibit remarkable in-context learning (ICL) capabilities, enabling them to solve unseen tasks solely based on input contexts without adjusting model parameters. In this paper, we study ICL in one of its simplest setups: pretraining a linearly parameterized single-layer linear attention model for linear regression with a Gaussian prior. We establish a statistical task complexity bound for the attention model pretraining, showing that effective pretraining only requires a small number of independent tasks. Furthermore, we prove that the pretrained model closely matches the Bayes optimal algorithm, i.e., optimally tuned ridge regression, by achieving nearly Bayes optimal risk on unseen tasks under a fixed context length. These theoretical findings complement prior experimental research and shed light on the statistical foundations of ICL.
Related papers
- Dynamic Loss-Based Sample Reweighting for Improved Large Language Model Pretraining [55.262510814326035]
Existing reweighting strategies primarily focus on group-level data importance.
We introduce novel algorithms for dynamic, instance-level data reweighting.
Our framework allows us to devise reweighting strategies deprioritizing redundant or uninformative data.
arXiv Detail & Related papers (2025-02-10T17:57:15Z) - The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws [51.608402959163925]
We present the first systematic exploration of optimal sparse pre-training configurations for large language models.
We find that initiating pruning at 25% of total training compute and concluding at 75% achieves near-optimal final evaluation loss.
We propose a new scaling law that modifies the Chinchilla scaling law to use the average parameter count over pre-training.
arXiv Detail & Related papers (2025-01-21T20:23:22Z) - Re-examining learning linear functions in context [1.8843687952462742]
In-context learning (ICL) has emerged as a powerful paradigm for easily adapting Large Language Models (LLMs) to various tasks.
We explore a simple model of ICL in a controlled setup with synthetic training data.
Our findings challenge the prevailing narrative that transformers adopt algorithmic approaches to learn a linear function in-context.
arXiv Detail & Related papers (2024-11-18T10:58:46Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Meta-Learning Adaptable Foundation Models [37.458141335750696]
We introduce a meta-learning framework infused with PEFT in this intermediate retraining stage to learn a model that can be easily adapted to unseen tasks.
In this setting, we demonstrate the suboptimality of standard retraining for finding an adaptable set of parameters.
We then apply these theoretical insights to retraining the RoBERTa model to predict the continuation of conversations within the ConvAI2 dataset.
arXiv Detail & Related papers (2024-10-29T17:24:18Z) - Transformers are Minimax Optimal Nonparametric In-Context Learners [36.291980654891496]
In-context learning of large language models has proven to be a surprisingly effective method of learning a new task from only a few demonstrative examples.
We develop approximation and generalization error bounds for a transformer composed of a deep neural network and one linear attention layer.
We show that sufficiently trained transformers can achieve -- and even improve upon -- the minimax optimal estimation risk in context.
arXiv Detail & Related papers (2024-08-22T08:02:10Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Asymptotic theory of in-context learning by linear attention [33.53106537972063]
In-context learning is a cornerstone of Transformers' success.
Questions about the necessary sample complexity, pretraining task diversity, and context length for successful ICL remain unresolved.
arXiv Detail & Related papers (2024-05-20T03:24:24Z) - Pretraining task diversity and the emergence of non-Bayesian in-context
learning for regression [31.950737940558984]
Pretrained transformers exhibit the remarkable ability of in-context learning (ICL)
Can ICL solve fundamentally $textitnew$ tasks that are very different from those seen during pretraining?
arXiv Detail & Related papers (2023-06-26T21:05:20Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.