A Safe and Efficient Self-evolving Algorithm for Decision-making and Control of Autonomous Driving Systems
- URL: http://arxiv.org/abs/2408.12187v1
- Date: Thu, 22 Aug 2024 08:05:03 GMT
- Title: A Safe and Efficient Self-evolving Algorithm for Decision-making and Control of Autonomous Driving Systems
- Authors: Shuo Yang, Liwen Wang, Yanjun Huang, Hong Chen,
- Abstract summary: Self-evolving autonomous vehicles are expected to cope with unknown scenarios in the real-world environment.
reinforcement learning is able to self evolve by learning the optimal policy.
This paper proposes a hybrid Mechanism-Experience-Learning augmented approach.
- Score: 19.99282698119699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous vehicles with a self-evolving ability are expected to cope with unknown scenarios in the real-world environment. Take advantage of trial and error mechanism, reinforcement learning is able to self evolve by learning the optimal policy, and it is particularly well suitable for solving decision-making problems. However, reinforcement learning suffers from safety issues and low learning efficiency, especially in the continuous action space. Therefore, the motivation of this paper is to address the above problem by proposing a hybrid Mechanism-Experience-Learning augmented approach. Specifically, to realize the efficient self-evolution, the driving tendency by analogy with human driving experience is proposed to reduce the search space of the autonomous driving problem, while the constrained optimization problem based on a mechanistic model is designed to ensure safety during the self-evolving process. Experimental results show that the proposed method is capable of generating safe and reasonable actions in various complex scenarios, improving the performance of the autonomous driving system. Compared to conventional reinforcement learning, the safety and efficiency of the proposed algorithm are greatly improved. The training process is collision-free, and the training time is equivalent to less than 10 minutes in the real world.
Related papers
- A Safe Self-evolution Algorithm for Autonomous Driving Based on Data-Driven Risk Quantification Model [14.398857940603495]
This paper proposes a safe self-evolution algorithm for autonomous driving based on data-driven risk quantification model.
To prevent the impact of over-conservative safety guarding policies on the self-evolution capability of the algorithm, a safety-evolutionary decision-control integration algorithm with adjustable safety limits is proposed.
arXiv Detail & Related papers (2024-08-23T02:52:35Z) - Accelerating the Evolution of Personalized Automated Lane Change through Lesson Learning [21.89687882922275]
Personalization is crucial for the widespread adoption of advanced driver assistance system.
To match up with each user's preference, the online evolution capability is a must.
This paper proposes a lesson learning approach: learning from driver's takeover interventions.
arXiv Detail & Related papers (2024-05-13T08:25:45Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - SELFI: Autonomous Self-Improvement with Reinforcement Learning for Social Navigation [54.97931304488993]
Self-improving robots that interact and improve with experience are key to the real-world deployment of robotic systems.
We propose an online learning method, SELFI, that leverages online robot experience to rapidly fine-tune pre-trained control policies.
We report improvements in terms of collision avoidance, as well as more socially compliant behavior, measured by a human user study.
arXiv Detail & Related papers (2024-03-01T21:27:03Z) - Imitation Is Not Enough: Robustifying Imitation with Reinforcement
Learning for Challenging Driving Scenarios [147.16925581385576]
We show how imitation learning combined with reinforcement learning can substantially improve the safety and reliability of driving policies.
We train a policy on over 100k miles of urban driving data, and measure its effectiveness in test scenarios grouped by different levels of collision likelihood.
arXiv Detail & Related papers (2022-12-21T23:59:33Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Parallelized and Randomized Adversarial Imitation Learning for
Safety-Critical Self-Driving Vehicles [11.463476667274051]
It is essential to consider reliable ADAS function coordination to control the driving system, safely.
This paper proposes a randomized adversarial imitation learning (RAIL) algorithm.
The proposed method is able to train the decision maker that deals with the LIDAR data and controls the autonomous driving in multi-lane complex highway environments.
arXiv Detail & Related papers (2021-12-26T23:42:49Z) - Improving Robustness of Learning-based Autonomous Steering Using
Adversarial Images [58.287120077778205]
We introduce a framework for analyzing robustness of the learning algorithm w.r.t varying quality in the image input for autonomous driving.
Using the results of sensitivity analysis, we propose an algorithm to improve the overall performance of the task of "learning to steer"
arXiv Detail & Related papers (2021-02-26T02:08:07Z) - Safe Trajectory Planning Using Reinforcement Learning for Self Driving [21.500697097095408]
We propose using model-free reinforcement learning for the trajectory planning stage of self-driving.
We show that this approach allows us to operate the car in a more safe, general and comfortable manner, required for the task of self driving.
arXiv Detail & Related papers (2020-11-09T19:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.