A Safe Self-evolution Algorithm for Autonomous Driving Based on Data-Driven Risk Quantification Model
- URL: http://arxiv.org/abs/2408.12805v1
- Date: Fri, 23 Aug 2024 02:52:35 GMT
- Title: A Safe Self-evolution Algorithm for Autonomous Driving Based on Data-Driven Risk Quantification Model
- Authors: Shuo Yang, Shizhen Li, Yanjun Huang, Hong Chen,
- Abstract summary: This paper proposes a safe self-evolution algorithm for autonomous driving based on data-driven risk quantification model.
To prevent the impact of over-conservative safety guarding policies on the self-evolution capability of the algorithm, a safety-evolutionary decision-control integration algorithm with adjustable safety limits is proposed.
- Score: 14.398857940603495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving systems with self-evolution capabilities have the potential to independently evolve in complex and open environments, allowing to handle more unknown scenarios. However, as a result of the safety-performance trade-off mechanism of evolutionary algorithms, it is difficult to ensure safe exploration without sacrificing the improvement ability. This problem is especially prominent in dynamic traffic scenarios. Therefore, this paper proposes a safe self-evolution algorithm for autonomous driving based on data-driven risk quantification model. Specifically, a risk quantification model based on the attention mechanism is proposed by modeling the way humans perceive risks during driving, with the idea of achieving safety situation estimation of the surrounding environment through a data-driven approach. To prevent the impact of over-conservative safety guarding policies on the self-evolution capability of the algorithm, a safety-evolutionary decision-control integration algorithm with adjustable safety limits is proposed, and the proposed risk quantization model is integrated into it. Simulation and real-vehicle experiments results illustrate the effectiveness of the proposed method. The results show that the proposed algorithm can generate safe and reasonable actions in a variety of complex scenarios and guarantee safety without losing the evolutionary potential of learning-based autonomous driving systems.
Related papers
- A Safe and Efficient Self-evolving Algorithm for Decision-making and Control of Autonomous Driving Systems [19.99282698119699]
Self-evolving autonomous vehicles are expected to cope with unknown scenarios in the real-world environment.
reinforcement learning is able to self evolve by learning the optimal policy.
This paper proposes a hybrid Mechanism-Experience-Learning augmented approach.
arXiv Detail & Related papers (2024-08-22T08:05:03Z) - Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation [5.928213664340974]
This research addresses the safety issue in the control optimization problem of autonomous driving.
We propose a novel, model-based approach for policy optimization, utilizing a conditional Value-at-Risk based Soft Actor Critic.
Our method introduces a worst-case actor to guide safe exploration, ensuring rigorous adherence to safety requirements even in unpredictable scenarios.
arXiv Detail & Related papers (2024-07-08T18:32:40Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
We propose a reinforcement learning framework that combines risk-sensitive control with an adaptive action space curriculum.
We show that our algorithm is capable of learning high-speed policies for a real-world off-road driving task.
arXiv Detail & Related papers (2024-05-07T23:32:36Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
We propose a model predictive control approach for autonomous vehicles that exploits learned Gaussian processes for predicting human driving behavior.
A multi-mode predictive control approach considers the possible intentions of the human drivers.
arXiv Detail & Related papers (2023-03-08T17:14:57Z) - SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for
Autonomous Driving [16.78084912175149]
This paper proposes the "Self-Surveillance and Self-Adaption System" as a systematic approach to online minimize the SOTIF risk.
The core of this system is the risk monitoring of the implemented artificial intelligence algorithms within the autonomous vehicles.
The inherent perception algorithm risk and external collision risk are jointly quantified via SOTIF entropy.
arXiv Detail & Related papers (2022-11-08T05:02:12Z) - Adaptive Risk Tendency: Nano Drone Navigation in Cluttered Environments
with Distributional Reinforcement Learning [17.940958199767234]
We present a distributional reinforcement learning framework to learn adaptive risk tendency policies.
We show our algorithm can adjust its risk-sensitivity on the fly both in simulation and real-world experiments.
arXiv Detail & Related papers (2022-03-28T13:39:58Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Addressing Inherent Uncertainty: Risk-Sensitive Behavior Generation for
Automated Driving using Distributional Reinforcement Learning [0.0]
We propose a two-step approach for risk-sensitive behavior generation for self-driving vehicles.
First, we learn an optimal policy in an uncertain environment with Deep Distributional Reinforcement Learning.
During execution, the optimal risk-sensitive action is selected by applying established risk criteria.
arXiv Detail & Related papers (2021-02-05T11:45:12Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.