論文の概要: Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment
- arxiv url: http://arxiv.org/abs/2408.12194v2
- Date: Fri, 23 Aug 2024 06:46:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 10:14:02.493403
- Title: Large Language Models as Foundations for Next-Gen Dense Retrieval: A Comprehensive Empirical Assessment
- Title(参考訳): 次世代Dense Retrievalの基礎としての大規模言語モデル:包括的実証評価
- Authors: Kun Luo, Minghao Qin, Zheng Liu, Shitao Xiao, Jun Zhao, Kang Liu,
- Abstract要約: BERTやT5のような事前訓練された言語モデルは、高密度検索のための重要なバックボーンエンコーダとして機能する。
近年,大規模言語モデル (LLM) をレトリバーとして使用し,様々なタスクでSOTA性能を達成している。
- 参考スコア(独自算出の注目度): 16.39696580487218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretrained language models like BERT and T5 serve as crucial backbone encoders for dense retrieval. However, these models often exhibit limited generalization capabilities and face challenges in improving in domain accuracy. Recent research has explored using large language models (LLMs) as retrievers, achieving SOTA performance across various tasks. Despite these advancements, the specific benefits of LLMs over traditional retrievers and the impact of different LLM configurations, such as parameter sizes, pretraining duration, and alignment processes on retrieval tasks remain unclear. In this work, we conduct a comprehensive empirical study on a wide range of retrieval tasks, including in domain accuracy, data efficiency, zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. We evaluate over 15 different backbone LLMs and non LLMs. Our findings reveal that larger models and extensive pretraining consistently enhance in domain accuracy and data efficiency. Additionally, larger models demonstrate significant potential in zero shot generalization, lengthy retrieval, instruction based retrieval, and multi task learning. These results underscore the advantages of LLMs as versatile and effective backbone encoders in dense retrieval, providing valuable insights for future research and development in this field.
- Abstract(参考訳): BERTやT5のような事前訓練された言語モデルは、高密度検索のための重要なバックボーンエンコーダとして機能する。
しかし、これらのモデルはしばしば限定的な一般化能力を示し、ドメインの正確性を改善する上での課題に直面している。
近年,大規模言語モデル (LLM) をレトリバーとして使用し,様々なタスクでSOTA性能を達成している。
これらの進歩にもかかわらず、従来のレトリバーに対するLLMの特定の利点と、パラメータサイズ、事前学習時間、アライメントプロセスなどの異なるLLM構成の影響は、まだ不明である。
本研究では,ドメイン精度,データ効率,ゼロショット一般化,長大検索,命令ベース検索,マルチタスク学習など,幅広い検索タスクに関する総合的研究を行う。
我々は15種類以上の背骨LLMと非LLMを評価した。
以上の結果から,より大きなモデルと広範な事前訓練がドメインの精度とデータ効率を継続的に向上させることが明らかとなった。
さらに、より大規模なモデルでは、ゼロショットの一般化、長い検索、命令ベースの検索、マルチタスク学習において大きなポテンシャルを示す。
これらの結果は,LLMの高密度検索における汎用的で効果的なバックボーンエンコーダとしての利点を裏付けるものであり,今後の研究・開発に有用な知見を提供するものである。
関連論文リスト
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - Dynamic Uncertainty Ranking: Enhancing In-Context Learning for Long-Tail Knowledge in LLMs [50.29035873837]
大規模言語モデル(LLM)は、事前訓練中に多様なドメインから膨大な量の知識を学習することができる。
専門ドメインからの長い尾の知識は、しばしば不足し、表現されていないため、モデルの記憶にはほとんど現れない。
ICLの強化学習に基づく動的不確実性ランキング手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T03:42:17Z) - Fact, Fetch, and Reason: A Unified Evaluation of Retrieval-Augmented Generation [19.312330150540912]
新たなアプリケーションは、Large Language Models(LLMs)を使用して、検索強化世代(RAG)機能を強化している。
FRAMESは,LLMが現実的な応答を提供する能力をテストするために設計された高品質な評価データセットである。
本稿では,最先端のLLMでもこの課題に対処し,0.40の精度で検索を行なわないことを示す。
論文 参考訳(メタデータ) (2024-09-19T17:52:07Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - From Generalist to Specialist: Improving Large Language Models for Medical Physics Using ARCoT [0.0]
ARCoT(Adaptable Retrieval-based Chain of Thought)は、大規模言語モデル(LLM)のドメイン固有精度を高めるために設計されたフレームワークである。
本モデルでは, 標準LLMよりも優れ, 平均人体性能が68%向上した。
論文 参考訳(メタデータ) (2024-05-17T18:31:38Z) - LLM In-Context Recall is Prompt Dependent [0.0]
これを行うモデルの能力は、実世界のアプリケーションにおける実用性と信頼性に大きな影響を及ぼす。
本研究は, LLMのリコール能力がプロンプトの内容に影響を及ぼすだけでなく, トレーニングデータのバイアスによって損なわれる可能性があることを示す。
論文 参考訳(メタデータ) (2024-04-13T01:13:59Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
InFO-RAG という情報改質訓練手法を提案する。
InFO-RAGは低コストで、様々なタスクにまたがっている。
LLaMA2の性能を平均9.39%向上させる。
論文 参考訳(メタデータ) (2024-02-28T08:24:38Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - The Truth is in There: Improving Reasoning in Language Models with
Layer-Selective Rank Reduction [22.659005954676598]
重み行列の高次成分を選択的に除去することにより,大規模言語モデルの性能を大幅に向上させることができることを示す。
LAER(Layer-Selective Rank reduction)と呼ばれるこの単純な介入は、トレーニングが完了した後、モデル上で行うことができる。
言語モデルとデータセットにまたがって、この発見の汎用性を実証する広範な実験を示す。
論文 参考訳(メタデータ) (2023-12-21T03:51:08Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。