Observation of electric field induced superradiance slowdown in ultracold Rydberg atomic gases
- URL: http://arxiv.org/abs/2408.12268v2
- Date: Fri, 15 Nov 2024 13:00:25 GMT
- Title: Observation of electric field induced superradiance slowdown in ultracold Rydberg atomic gases
- Authors: Yunhui He, Jingxu Bai, Yuechun Jiao, Weibin Li, Jianming zhao,
- Abstract summary: Atoms excited to electronically high-lying Rydberg states decay to low-energy states through spontaneous emission processes.
We report experimental observations of a significant slowdown in superradiance upon applying an electric field.
Our numerical simulations demonstrate that superradiance decoherence is caused by the Stark shifts of the Rydberg level.
- Score: 0.4169767831866066
- License:
- Abstract: Atoms excited to electronically high-lying Rydberg states decay to low-energy states through spontaneous emission processes. We investigate the impact of a static electric field on the superradiant emission process between Rydberg $|60D_{5/2}\rangle$ and $|61P_{3/2}\rangle$ states in an ultracold Cesium Rydberg atom ensemble. We report experimental observations of a significant slowdown in superradiance upon applying an electric field. To understand the slowing down dynamics, we employ a discrete truncated Wigner approximation (DTWA) method to solve the corresponding master equation numerically. Our numerical simulations demonstrate that superradiance decoherence is caused by the Stark shifts of the Rydberg level. Our theoretical simulations qualitatively match the experimental observations. Our work provides new insights into controlling quantum critical behaviors, with implications for quantum many-body dynamics, and the study of quantum phase transitions.
Related papers
- Probing false vacuum decay on a cold-atom gauge-theory quantum simulator [1.8075943133358323]
We report an experimental investigation, in a cold-atom quantum simulator, of the effect of the background field on pair production from the infinite-mass vacuum.
We find that the energy spectrum of the time-evolved observables in the zero mass limit displays excitation peaks analogous to bosonic modes in the Schwinger model.
arXiv Detail & Related papers (2024-11-19T15:28:24Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Controlled dissipation for Rydberg atom experiments [0.0]
We excite cold rubidium atoms in a magneto-optical trap to $70$-S Rydberg states.
We simultaneously induce forced dissipation by resonantly coupling the Rydberg state to a hyperfine level of the short-lived $6$-P state.
arXiv Detail & Related papers (2023-10-31T17:50:39Z) - Maximally entangled Rydberg-atom pairs via Landau-Zener sweeps [1.3124513975412255]
We analyze the formation of maximally entangled Rydberg atom pairs subjected to Landau-Zener sweeps of the atom-light detuning.
Our study may offer novel ways to generate maximally entangled states, quantum gates and exotic quantum matter in arrays of Rydberg atoms through Landau Zener sweeps.
arXiv Detail & Related papers (2023-02-10T18:22:56Z) - Vacuum-field-induced state mixing [0.49157446832511503]
We show a surprising decrease of decay rates within a considerable range of atom-nanoparticle separations.
Our work opens new quantum state manipulation possibilities in emitters with closely spaced energy levels.
arXiv Detail & Related papers (2022-12-22T11:14:08Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Dynamics of atoms within atoms [0.0]
We study the quantum-many-body dynamics of atoms moving within the Rydberg atom.
Our simulations focus in particular on the scenario of multiple sequential Rydberg excitations on the same Rubidium condensate.
arXiv Detail & Related papers (2021-11-09T10:16:49Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Motion-induced radiation due to an atom in the presence of a graphene
plane [62.997667081978825]
We study the motion-induced radiation due to the non-relativistic motion of an atom in the presence of a static graphene plate.
We show that the effect of the plate is to increase the probability of emission when the atom is near the plate and oscillates along a direction perpendicular to it.
arXiv Detail & Related papers (2021-04-15T14:15:23Z) - Electronic decay process spectra including nuclear degrees of freedom [49.1574468325115]
We explore the ultra-rapid electronic motion spanning attoseconds to femtoseconds, demonstrating that it is equally integral and relevant to the discipline.
The advent of ultrashort attosecond pulse technology has revolutionized our ability to directly observe electronic rearrangements in atoms and molecules.
arXiv Detail & Related papers (2021-02-10T16:51:48Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.