論文の概要: Developing vocal system impaired patient-aimed voice quality assessment approach using ASR representation-included multiple features
- arxiv url: http://arxiv.org/abs/2408.12279v1
- Date: Thu, 22 Aug 2024 10:22:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 14:23:36.766951
- Title: Developing vocal system impaired patient-aimed voice quality assessment approach using ASR representation-included multiple features
- Title(参考訳): ASR表現を含む複数特徴を用いた声質評価手法の開発
- Authors: Shaoxiang Dang, Tetsuya Matsumoto, Yoshinori Takeuchi, Takashi Tsuboi, Yasuhiro Tanaka, Daisuke Nakatsubo, Satoshi Maesawa, Ryuta Saito, Masahisa Katsuno, Hiroaki Kudo,
- Abstract要約: 本稿では,音声認識と自己教師型学習表現の利用について紹介する。
実験ではPVQDデータセットのチェックを行い、英語における様々な声道系の損傷の原因をカバーし、パーキンソン病の患者に焦点を当てた日本語データセットを作成した。
PVQDの結果, PCCでは0.8, MSEでは0.5と顕著な相関がみられた。
- 参考スコア(独自算出の注目度): 0.4681310436826459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The potential of deep learning in clinical speech processing is immense, yet the hurdles of limited and imbalanced clinical data samples loom large. This article addresses these challenges by showcasing the utilization of automatic speech recognition and self-supervised learning representations, pre-trained on extensive datasets of normal speech. This innovative approach aims to estimate voice quality of patients with impaired vocal systems. Experiments involve checks on PVQD dataset, covering various causes of vocal system damage in English, and a Japanese dataset focusing on patients with Parkinson's disease before and after undergoing subthalamic nucleus deep brain stimulation (STN-DBS) surgery. The results on PVQD reveal a notable correlation (>0.8 on PCC) and an extraordinary accuracy (<0.5 on MSE) in predicting Grade, Breathy, and Asthenic indicators. Meanwhile, progress has been achieved in predicting the voice quality of patients in the context of STN-DBS.
- Abstract(参考訳): 臨床音声処理における深層学習の可能性は非常に大きいが、限定的かつ不均衡な臨床データサンプルのハードルは大きい。
本稿では, 音声認識と自己教師付き学習表現の利用を, 通常の音声のデータセットに基づいて事前学習することで, これらの課題に対処する。
この革新的なアプローチは、聴覚障害のある患者の声質を推定することを目的としている。
実験では、PVQDデータセットのチェックを行い、英語における様々な声道系の損傷の原因をカバーし、視床下核深部脳刺激(STN-DBS)手術前後のパーキンソン病患者に焦点を当てた日本語データセットを作成した。
PVQDの結果, PCCでは0.8, MSEでは0.5であった。
一方,STN-DBSの文脈における患者の声質の予測は進歩している。
関連論文リスト
- Exploring Speech Pattern Disorders in Autism using Machine Learning [12.469348589699766]
本研究は, 被験者と患者との対話の分析を通じて, 独特の音声パターンを識別するための包括的アプローチを提案する。
我々は,40の音声関連特徴を抽出し,周波数,ゼロクロス速度,エネルギー,スペクトル特性,メル周波数ケプストラル係数(MFCC),バランスに分類した。
分類モデルはASDと非ASDを区別することを目的としており、精度は87.75%である。
論文 参考訳(メタデータ) (2024-05-03T02:59:15Z) - Lightly Weighted Automatic Audio Parameter Extraction for the Quality
Assessment of Consensus Auditory-Perceptual Evaluation of Voice [18.8222742272435]
提案手法は, ジッタ, 絶対ジッタ, シャマー, ハーモニック・ツー・ノイズ比 (HNR) , ゼロクロスという, 年齢, 性別, および5つの音響パラメータを利用する。
その結果,提案手法は最先端技術(SOTA)手法と類似し,一般的な音声事前学習モデルを用いて得られた潜在表現よりも優れることがわかった。
論文 参考訳(メタデータ) (2023-11-27T07:19:22Z) - Automatically measuring speech fluency in people with aphasia: first
achievements using read-speech data [55.84746218227712]
本研究の目的は,言語習得の分野で開発された信号処理algorithmの関連性を評価することである。
論文 参考訳(メタデータ) (2023-08-09T07:51:40Z) - Factors Affecting the Performance of Automated Speaker Verification in
Alzheimer's Disease Clinical Trials [4.0388304511445146]
自動話者検証(ASV)モデルは、登録された個人の同一性を検証し、臨床試験で重複を除去するために重要である。
本研究は,声質特性により,一部のサブグループで異なるASV特性を示すため,音声バイオメトリックスが公平さの懸念を生じさせることを示した。
論文 参考訳(メタデータ) (2023-06-20T12:24:46Z) - Analysing the Impact of Audio Quality on the Use of Naturalistic
Long-Form Recordings for Infant-Directed Speech Research [62.997667081978825]
早期言語習得のモデリングは、幼児が言語スキルをブートストラップする方法を理解することを目的としている。
近年の進歩により、より自然主義的なトレーニングデータを計算モデルに利用できるようになった。
音質がこれらのデータに対する分析やモデリング実験にどう影響するかは、現時点では不明である。
論文 参考訳(メタデータ) (2023-05-03T08:25:37Z) - The Far Side of Failure: Investigating the Impact of Speech Recognition
Errors on Subsequent Dementia Classification [8.032686410648274]
自然発話で検出される言語異常は、認知障害などの認知障害のスクリーニングなど、様々な臨床応用の可能性を示唆している。
自己教師付き学習(SSL)自動音声認識(ASR)モデルにおいて,臨床環境から抽出した難解な音声サンプルでは,有意な性能が得られない。
我々の重要な発見の1つは、パラドックス的に、比較的高いエラー率を持つASRシステムは、動詞の文字起こしに基づく分類よりも、より下流の分類精度の高い転写文を生成できるということである。
論文 参考訳(メタデータ) (2022-11-11T17:06:45Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
音声ベースの自動ADスクリーニングシステムは、他の臨床スクリーニング技術に代わる非侵襲的でスケーラブルな代替手段を提供する。
専門的なデータの収集は、そのようなシステムを開発する際に、モデル選択と特徴学習の両方に不確実性をもたらす。
本稿では,BERT と Roberta の事前学習したテキストエンコーダのドメイン微調整の堅牢性向上のための特徴とモデルの組み合わせ手法について検討する。
論文 参考訳(メタデータ) (2022-06-28T05:09:01Z) - The effect of speech pathology on automatic speaker verification -- a
large-scale study [6.468412158245622]
病的スピーチは 健康なスピーチに比べて プライバシー侵害のリスクが高まっています
ディスフォニアの成人は再識別のリスクが高まる一方、ディスフォニアのような症状は健康な話者に匹敵する結果をもたらす。
病理型間でデータをマージすると、EERは著しく低下し、自動話者検証における病理多様性の潜在的利点が示唆された。
論文 参考訳(メタデータ) (2022-04-13T15:17:00Z) - Investigation of Data Augmentation Techniques for Disordered Speech
Recognition [69.50670302435174]
本稿では,不規則音声認識のための一連のデータ拡張手法について検討する。
正常な音声と無秩序な音声の両方が増強過程に利用された。
UASpeechコーパスを用いた最終話者適応システムと、最大2.92%の絶対単語誤り率(WER)の速度摂動に基づく最良の拡張アプローチ
論文 参考訳(メタデータ) (2022-01-14T17:09:22Z) - A Preliminary Study of a Two-Stage Paradigm for Preserving Speaker
Identity in Dysarthric Voice Conversion [50.040466658605524]
変形性音声変換(DVC)における話者同一性維持のための新しいパラダイムを提案する。
変形性音声の質は統計VCによって大幅に改善される。
しかし, 変形性関節症患者の通常の発話は, ほとんど収集できないため, 過去の研究は患者の個性を取り戻すことはできなかった。
論文 参考訳(メタデータ) (2021-06-02T18:41:03Z) - NUVA: A Naming Utterance Verifier for Aphasia Treatment [49.114436579008476]
失語症(PWA)患者の治療介入に対する反応の診断とモニタリングの両立のための画像命名タスクを用いた音声性能評価
本稿では,失語症脳卒中患者の「正しい」と「正しくない」を分類する深層学習要素を組み込んだ発話検証システムであるNUVAについて述べる。
イギリス系英語8ヶ国語でのテストでは、システムの性能精度は83.6%から93.6%の範囲であり、10倍のクロスバリデーション平均は89.5%であった。
論文 参考訳(メタデータ) (2021-02-10T13:00:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。