論文の概要: Distinguishing Parkinson's Patients Using Voice-Based Feature Extraction and Classification
- arxiv url: http://arxiv.org/abs/2501.14390v1
- Date: Fri, 24 Jan 2025 10:44:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:56:26.196423
- Title: Distinguishing Parkinson's Patients Using Voice-Based Feature Extraction and Classification
- Title(参考訳): 音声による特徴抽出と分類を用いたパーキンソン病患者の識別
- Authors: Burak Çelik, Ayhan Akbal,
- Abstract要約: 本研究は、パーキンソン病患者の音声特徴の抽出と分類を通じて、健常者からパーキンソン病を区別することに焦点を当てる。
また,3層ニューラルネットワークアーキテクチャの精度を従来の機械学習アルゴリズムと比較した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts motor functions and speech characteristics This study focuses on differentiating individuals with Parkinson's disease from healthy controls through the extraction and classification of speech features. Patients were further divided into 2 groups. Med On represents the patient with medication, while Med Off represents the patient without medication. The dataset consisted of patients and healthy individuals who read a predefined text using the H1N Zoom microphone in a suitable recording environment at F{\i}rat University Neurology Department. Speech recordings from PD patients and healthy controls were analyzed, and 19 key features were extracted, including jitter, luminance, zero-crossing rate (ZCR), root mean square (RMS) energy, entropy, skewness, and kurtosis.These features were visualized in graphs and statistically evaluated to identify distinctive patterns in PD patients. Using MATLAB's Classification Learner toolbox, several machine learning classification algorithm models were applied to classify groups and significant accuracy rates were achieved. The accuracy of our 3-layer artificial neural network architecture was also compared with classical machine learning algorithms. This study highlights the potential of noninvasive voice analysis combined with machine learning for early detection and monitoring of PD patients. Future research can improve diagnostic accuracy by optimizing feature selection and exploring advanced classification techniques.
- Abstract(参考訳): パーキンソン病(英: Parkinson's disease,PD)は、運動機能と発声特性に影響を与える進行性神経変性疾患である。
患者はさらに2つのグループに分けられた。
Med Onは薬の患者を表し、Med Offは薬のない患者を表す。
このデータセットは、F{\i}rat University Neurology Departmentの適切な記録環境において、H1N Zoomマイクを使用して予め定義されたテキストを読む患者と健康な個人で構成された。
PD患者の音声記録と健康管理を解析し,ジッタ,輝度,ゼロ交差速度(ZCR),ルート平均二乗(RMS)エネルギー,エントロピー,歪,硬変など19種類の特徴を抽出した。
MATLABの分類学習ツールボックスを用いて、いくつかの機械学習分類アルゴリズムモデルを用いてグループを分類し、かなりの精度を達成した。
また,3層ニューラルネットワークアーキテクチャの精度を従来の機械学習アルゴリズムと比較した。
本研究は,非侵襲的音声分析と機械学習を併用したPD患者の早期発見とモニタリングの可能性を明らかにする。
今後の研究は、特徴選択を最適化し、高度な分類手法を探求することで、診断精度を向上させることができる。
関連論文リスト
- GAMMA-PD: Graph-based Analysis of Multi-Modal Motor Impairment Assessments in Parkinson's Disease [9.69595196614787]
本稿では,多モード臨床データ解析のための新しいヘテロジニアスハイパーグラフ融合フレームワークであるGAMA-PDを提案する。
GAMMA-PDは、高次情報を保存することにより、画像と非画像データを"ハイパーネットワーク"(患者集団グラフ)に統合する。
パーキンソン病における運動障害症状の予測に有意な改善が認められた。
論文 参考訳(メタデータ) (2024-10-01T15:51:33Z) - Developing vocal system impaired patient-aimed voice quality assessment approach using ASR representation-included multiple features [0.4681310436826459]
本稿では,音声認識と自己教師型学習表現の利用について紹介する。
実験ではPVQDデータセットのチェックを行い、英語における様々な声道系の損傷の原因をカバーし、パーキンソン病の患者に焦点を当てた日本語データセットを作成した。
PVQDの結果, PCCでは0.8, MSEでは0.5と顕著な相関がみられた。
論文 参考訳(メタデータ) (2024-08-22T10:22:53Z) - Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
パーキンソン病(英: Parkinson's Disease、PD)は、音声を含む運動機能と非運動機能の両方に大きな影響を及ぼす進行性神経変性疾患である。
本稿では,音声データを用いたPD認識手法の総合的なレビューを行い,機械学習とデータ駆動アプローチの進歩を強調した。
ロジスティック回帰、SVM、ニューラルネットワークなど、さまざまな分類アルゴリズムが検討されている。
以上の結果から,特定の音響特性と高度な機械学習技術は,PDと健常者の間で効果的に区別できることが示唆された。
論文 参考訳(メタデータ) (2024-07-22T23:24:02Z) - Parkinson's Disease Detection through Vocal Biomarkers and Advanced
Machine Learning Algorithms [0.0]
本研究は早期疾患予測の手段として, PD患者の声質変化の可能性について検討した。
XGBoost、LightGBM、Baging、AdaBoost、Support Vector Machineなど、さまざまな高度な機械学習アルゴリズムを活用する。
LightGBMは、100%の感度と94.43%の特異性を示し、他の機械学習アルゴリズムの精度とAUCスコアを上回った。
論文 参考訳(メタデータ) (2023-11-09T15:21:10Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
パーキンソン病(PD)研究における技術ベースアセスメントの実施状況について報告した。
本研究は、両手同期スマートウォッチ測定におけるPDサンプルサイズとして最大である。
論文 参考訳(メタデータ) (2022-05-11T09:12:59Z) - fMRI Neurofeedback Learning Patterns are Predictive of Personal and
Clinical Traits [62.997667081978825]
機能的MRI(fMRI)による自律神経運動課題における学習経過の個人的シグネチャを得る。
署名は、第1セッションで同様のfMRI由来の脳の状態が与えられた後、第2セッションで扁桃体の活動を予測することに基づいている。
論文 参考訳(メタデータ) (2021-12-21T06:52:48Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
機能的MRI(fMRI)によって導かれる自己神経変調タスクを行う個人のための個人表現を学習するためのディープニューラルネットワーク手法を提案する。
この表現は、直近のfMRIフレームが与えられた次のfMRIフレームにおける扁桃体活動を予測する自己教師型リカレントニューラルネットワークによって学習され、学習された個々の表現に条件付けされる。
論文 参考訳(メタデータ) (2021-12-06T10:16:54Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Machine learning discrimination of Parkinson's Disease stages from
walker-mounted sensors data [0.0]
本研究は,パーキンソン病進行の6段階を識別するための機械学習手法を適用した。
データは、運動障害クリニックの実験で、低コストの歩行センサーによって取得されました。
論文 参考訳(メタデータ) (2020-06-22T09:34:12Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。