Cheating in quantum Rabin oblivious transfer using delayed measurements
- URL: http://arxiv.org/abs/2408.12388v1
- Date: Thu, 22 Aug 2024 13:31:16 GMT
- Title: Cheating in quantum Rabin oblivious transfer using delayed measurements
- Authors: James T. Peat, Erika Andersson,
- Abstract summary: We explore a variant known as Rabin oblivious transfer.
For a previously suggested protocol, we show a possible attack using a delayed measurement.
We show how this attack allows perfect cheating, unless the protocol is modified, and suggest changes which lower the cheating probability for the examined cheating strategies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Oblivious transfer has been the interest of study as it can be used as a building block for multiparty computation. There are many forms of oblivious transfer; we explore a variant known as Rabin oblivious transfer. Here the sender Alice has one bit, and the receiver Bob obtains this bit with a certain probability. The sender does not know whether the receiver obtained the bit or not. For a previously suggested protocol, we show a possible attack using a delayed measurement. This allows a cheating party to pass tests carried out by the other party, while gaining more information than if they would have been honest. We show how this attack allows perfect cheating, unless the protocol is modified, and suggest changes which lower the cheating probability for the examined cheating strategies.
Related papers
- Incomplete quantum oblivious transfer with perfect one-sided security [0.0]
We consider 1 out of 2 oblivious transfer, where a sender sends two bits of information to a receiver.
We aim to find the lowest possible cheating probabilities.
We show that non-interactive quantum protocols can outperform non-interactive classical protocols.
arXiv Detail & Related papers (2024-09-26T06:35:36Z) - Insecurity of Quantum Two-Party Computation with Applications to Cheat-Sensitive Protocols and Oblivious Transfer Reductions [0.0]
We rigorously establish the impossibility of cheat-sensitive OT, where a dishonest party can cheat, but risks being detected.
We provide entropic bounds on primitives needed for secure function evaluation.
Our results hold in particular for transformations between a finite number of primitives and for any error.
arXiv Detail & Related papers (2024-05-20T15:39:30Z) - Quantum Rabin oblivious transfer using two pure states [0.0]
In oblivious transfer, the sender Alice holds a bit, and the receiver Bob either obtains the bit, or obtains no information with probability $p_?$.
We examine a quantum Rabin oblivious transfer protocol that uses two pure states. Investigating different cheating scenarios for the sender and for the receiver, we determine optimal cheating probabilities in each case.
arXiv Detail & Related papers (2024-05-07T16:54:16Z) - Algorithmic Persuasion Through Simulation [51.23082754429737]
We study a Bayesian persuasion game where a sender wants to persuade a receiver to take a binary action, such as purchasing a product.
The sender is informed about the (binary) state of the world, such as whether the quality of the product is high or low, but only has limited information about the receiver's beliefs and utilities.
Motivated by customer surveys, user studies, and recent advances in AI, we allow the sender to learn more about the receiver by querying an oracle that simulates the receiver's behavior.
arXiv Detail & Related papers (2023-11-29T23:01:33Z) - Quantum advantage in a unified scenario and secure detection of
resources [55.2480439325792]
We consider a single task to study different approaches of having quantum advantage.
We show that the optimal success probability in the overall process for a qubit communication might be higher than that for a cbit communication.
arXiv Detail & Related papers (2023-09-22T23:06:20Z) - Non-interactive XOR quantum oblivious transfer: optimal protocols and
their experimental implementations [0.0]
Oblivious transfer (OT) is an important cryptographic primitive.
We present an optimal protocol, which outperforms classical protocols.
We optically implement both the unreversed and the reversed protocols, and cheating strategies, noting that the reversed protocol is easier to implement.
arXiv Detail & Related papers (2022-09-22T20:28:39Z) - Sequential Information Design: Learning to Persuade in the Dark [49.437419242582884]
We study a repeated information design problem faced by an informed sender who tries to influence the behavior of a self-interested receiver.
At each round, the sender observes the realizations of random events in the sequential decision making (SDM) problem.
This begets the challenge of how to incrementally disclose such information to the receiver to persuade them to follow (desirable) action recommendations.
arXiv Detail & Related papers (2022-09-08T17:08:12Z) - Quantum cryptography with classical communication: parallel remote state
preparation for copy-protection, verification, and more [125.99533416395765]
Many cryptographic primitives are two-party protocols, where one party, Bob, has full quantum computational capabilities, and the other party, Alice, is only required to send random BB84 states to Bob.
We show how such protocols can generically be converted to ones where Alice is fully classical, assuming that Bob cannot efficiently solve the LWE problem.
This means that all communication between (classical) Alice and (quantum) Bob is classical, yet they can still make use of cryptographic primitives that would be impossible if both parties were classical.
arXiv Detail & Related papers (2022-01-31T18:56:31Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Multi-Receiver Online Bayesian Persuasion [51.94795123103707]
We study an online learning framework in which the sender repeatedly faces a receiver of an unknown, adversarially selected type.
We focus on the case with no externalities and binary actions, as customary in offline models.
We introduce a general online descent scheme to handle online learning problems with a finite number of possible loss functions.
arXiv Detail & Related papers (2021-06-11T16:05:31Z) - Imperfect 1-out-of-2 quantum oblivious transfer: bounds, a protocol, and
its experimental implementation [0.0]
We introduce a theoretical framework for studying semirandom quantum oblivious transfer.
We then use it to derive bounds on cheating.
We show that a lower bound of 2/3 on the minimum achievable cheating probability can be directly derived for semirandom protocols.
arXiv Detail & Related papers (2020-07-09T11:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.