Insecurity of Quantum Two-Party Computation with Applications to Cheat-Sensitive Protocols and Oblivious Transfer Reductions
- URL: http://arxiv.org/abs/2405.12121v2
- Date: Sun, 14 Jul 2024 20:48:17 GMT
- Title: Insecurity of Quantum Two-Party Computation with Applications to Cheat-Sensitive Protocols and Oblivious Transfer Reductions
- Authors: Esther Hänggi, Severin Winkler,
- Abstract summary: We rigorously establish the impossibility of cheat-sensitive OT, where a dishonest party can cheat, but risks being detected.
We provide entropic bounds on primitives needed for secure function evaluation.
Our results hold in particular for transformations between a finite number of primitives and for any error.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Oblivious transfer (OT) is a fundamental primitive for secure two-party computation. It is well known that OT cannot be implemented with information-theoretic security if the two players only have access to noiseless communication channels, even in the quantum case. As a result, weaker variants of OT have been studied. In this work, we rigorously establish the impossibility of cheat-sensitive OT, where a dishonest party can cheat, but risks being detected. We construct a general attack on any quantum protocol that allows the receiver to compute all inputs of the sender and provide an explicit upper bound on the success probability of this attack. This implies that cheat-sensitive quantum Symmetric Private Information Retrieval cannot be implemented with statistical information-theoretic security. Leveraging the techniques devised for our proofs, we provide entropic bounds on primitives needed for secure function evaluation. They imply impossibility results for protocols where the players have access to OT as a resource. This result significantly improves upon existing bounds and yields tight bounds for reductions of 1-out-of-n OT to a resource primitive. Our results hold in particular for transformations between a finite number of primitives and for any error.
Related papers
- 1-Shot Oblivious Transfer and 2-Party Computation from Noisy Quantum Storage [0.0]
A major research path is minimizing the required assumptions to achieve Oblivious Transfer (OT)
In this work, three main contributions are evidenced by leveraging quantum resources.
arXiv Detail & Related papers (2024-10-10T20:54:09Z) - Incomplete quantum oblivious transfer with perfect one-sided security [0.0]
We consider 1 out of 2 oblivious transfer, where a sender sends two bits of information to a receiver.
We aim to find the lowest possible cheating probabilities.
We show that non-interactive quantum protocols can outperform non-interactive classical protocols.
arXiv Detail & Related papers (2024-09-26T06:35:36Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - A constant lower bound for any quantum protocol for secure function
evaluation [0.0]
We show that perfect (or near perfect) security is impossible, even for quantum protocols.
Constant lower bounds are of practical interest since they imply the impossibility to arbitrarily amplify the security of quantum protocols.
arXiv Detail & Related papers (2022-03-15T21:40:48Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Geometry of Banach spaces: a new route towards Position Based
Cryptography [65.51757376525798]
We study Position Based Quantum Cryptography (PBQC) from the perspective of geometric functional analysis and its connections with quantum games.
The main question we are interested in asks for the optimal amount of entanglement that a coalition of attackers have to share in order to compromise the security of any PBQC protocol.
We show that the understanding of the type properties of some more involved Banach spaces would allow to drop out the assumptions and lead to unconditional lower bounds on the resources used to attack our protocol.
arXiv Detail & Related papers (2021-03-30T13:55:11Z) - Delegating Multi-Party Quantum Computations vs. Dishonest Majority in
Two Quantum Rounds [0.0]
Multi-Party Quantum Computation (MPQC) has attracted a lot of attention as a potential killer-app for quantum networks.
We present a composable protocol achieving blindness and verifiability even in the case of a single honest client.
arXiv Detail & Related papers (2021-02-25T15:58:09Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Imperfect 1-out-of-2 quantum oblivious transfer: bounds, a protocol, and
its experimental implementation [0.0]
We introduce a theoretical framework for studying semirandom quantum oblivious transfer.
We then use it to derive bounds on cheating.
We show that a lower bound of 2/3 on the minimum achievable cheating probability can be directly derived for semirandom protocols.
arXiv Detail & Related papers (2020-07-09T11:17:27Z) - Security Limitations of Classical-Client Delegated Quantum Computing [54.28005879611532]
A client remotely prepares a quantum state using a classical channel.
Privacy loss incurred by employing $RSP_CC$ as a sub-module is unclear.
We show that a specific $RSP_CC$ protocol can replace the quantum channel at least in some contexts.
arXiv Detail & Related papers (2020-07-03T13:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.