論文の概要: Generalized SAM: Efficient Fine-Tuning of SAM for Variable Input Image Sizes
- arxiv url: http://arxiv.org/abs/2408.12406v1
- Date: Thu, 22 Aug 2024 13:58:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 13:43:10.606647
- Title: Generalized SAM: Efficient Fine-Tuning of SAM for Variable Input Image Sizes
- Title(参考訳): 一般化SAM: 可変入力画像サイズに対するSAMの効率的な微調整
- Authors: Sota Kato, Hinako Mitsuoka, Kazuhiro Hotta,
- Abstract要約: 本稿では,Segment Anything Model (SAM) の入力画像サイズを可変化するための,効率的な微調整手法を提案する。
一般化SAM(GSAM)は、SAMを用いたトレーニング中にランダムトリミングを初めて適用し、トレーニングの計算コストを大幅に削減する。
- 参考スコア(独自算出の注目度): 3.8506666685467343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a lot of recent research on improving the efficiency of fine-tuning foundation models. In this paper, we propose a novel efficient fine-tuning method that allows the input image size of Segment Anything Model (SAM) to be variable. SAM is a powerful foundational model for image segmentation trained on huge datasets, but it requires fine-tuning to recognize arbitrary classes. The input image size of SAM is fixed at 1024 x 1024, resulting in substantial computational demands during training. Furthermore, the fixed input image size may result in the loss of image information, e.g. due to fixed aspect ratios. To address this problem, we propose Generalized SAM (GSAM). Different from the previous methods, GSAM is the first to apply random cropping during training with SAM, thereby significantly reducing the computational cost of training. Experiments on datasets of various types and various pixel counts have shown that GSAM can train more efficiently than SAM and other fine-tuning methods for SAM, achieving comparable or higher accuracy.
- Abstract(参考訳): 近年,ファウンデーションモデルの改良に関する研究が盛んに行われている。
本稿では,Segment Anything Model(SAM)の入力画像サイズを可変化するための,効率的な微調整手法を提案する。
SAMは、巨大なデータセットでトレーニングされた画像セグメンテーションのための強力な基礎モデルであるが、任意のクラスを認識するには微調整が必要である。
SAMの入力画像サイズは1024 x 1024で固定され、トレーニング中にかなりの計算要求が発生する。
さらに、固定入力画像サイズは、固定アスペクト比による画像情報、例えば、損失をもたらす可能性がある。
この問題に対処するため,一般化SAM (Generalized SAM) を提案する。
従来の手法とは異なり、GSAMはSAMを用いたトレーニング中にランダムトリミングを初めて適用し、トレーニングの計算コストを大幅に削減した。
様々な種類のデータセットと様々なピクセル数の実験により、GSAMはSAMや他のSAMの微調整方法よりも効率的に訓練することができ、同等または高い精度を達成することが示されている。
関連論文リスト
- BA-SAM: Scalable Bias-Mode Attention Mask for Segment Anything Model [65.92173280096588]
我々は,Segment Anything Model (SAM)における画像分解能変動の課題に対処する。
SAMはゼロショットの汎用性で知られており、さまざまな画像サイズを持つデータセットに直面するとパフォーマンスが低下する。
我々は、各トークンが隣り合う情報を優先順位付けできるバイアスモードのアテンションマスクを提案する。
論文 参考訳(メタデータ) (2024-01-04T15:34:44Z) - TinySAM: Pushing the Envelope for Efficient Segment Anything Model [76.21007576954035]
我々は,強力なゼロショット性能を維持しつつ,小さなセグメントの任意のモデル(TinySAM)を得るためのフレームワークを提案する。
本研究は,まず,軽量学生モデルを蒸留するためのハードプロンプトサンプリングとハードマスク重み付け戦略を用いた,フルステージの知識蒸留法を提案する。
また、学習後の量子化を高速化可能なセグメンテーションタスクに適用し、計算コストをさらに削減する。
論文 参考訳(メタデータ) (2023-12-21T12:26:11Z) - EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment
Anything [36.553867358541154]
Segment Anything Model (SAM)は多くの視覚アプリケーションのための強力なツールとして登場した。
本稿では,軽量なSAMモデルであるEfficientSAMを提案する。
我々のアイデアは、SAM画像エンコーダから特徴を再構築し、効果的な視覚的表現学習を実現するためのマスク付き画像事前学習(SAMI)を活用することに基づいている。
論文 参考訳(メタデータ) (2023-12-01T18:31:00Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - How to Efficiently Adapt Large Segmentation Model(SAM) to Medical Images [15.181219203629643]
Segment Anything (SAM)は、自然画像のゼロショットセグメンテーションにおいて印象的な機能を示す。
しかし、医療画像に適用すると、SAMは顕著なパフォーマンス低下に悩まされる。
本研究では,SAMエンコーダを凍結し,軽量なタスク固有予測ヘッドを微調整することを提案する。
論文 参考訳(メタデータ) (2023-06-23T18:34:30Z) - Personalize Segment Anything Model with One Shot [52.54453744941516]
我々は,Segment Anything Model (SAM) のためのトレーニング不要なパーソナライズ手法を提案する。
PerSAMは、参照マスクを持つ1つのイメージしか持たないため、最初にターゲットのコンセプトを以前のロケーションでローカライズする。
PerSAMは、ターゲット誘導された注意、ターゲットセマンティックなプロンプト、そしてカスケードされたポストリファインメントという3つのテクニックを通じて、他の画像やビデオにセグメントする。
論文 参考訳(メタデータ) (2023-05-04T17:59:36Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
我々は,大規模画像分割モデルであるSAM(Segment Anything Model)に基づいて,医用画像分割のための大規模モデルをカスタマイズする新たな研究パラダイムを探求する。
SAMedは、SAMイメージエンコーダにローランクベース(LoRA)ファインタニング戦略を適用し、ラベル付き医用画像セグメンテーションデータセットにプロンプトエンコーダとマスクデコーダを併用する。
我々の訓練されたSAMedモデルは,最先端の手法に匹敵する医用画像のセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-04-26T19:05:34Z) - Input Augmentation with SAM: Boosting Medical Image Segmentation with
Segmentation Foundation Model [36.015065439244495]
Segment Anything Model (SAM) はコンピュータビジョンタスクのための汎用セグメンテーションのための大規模モデルである。
SAMは100万枚の画像と10億枚以上のマスクを使って訓練され、自然の風景画像に広範囲のオブジェクトのセグメンテーション結果を生成することができる。
本報告では,SAMは医用画像データに高品質なセグメンテーションを提供していないが,その生成マスク,特徴,安定性スコアは,より優れた医用画像セグメンテーションモデルの構築と訓練に有用であることを示す。
論文 参考訳(メタデータ) (2023-04-22T07:11:53Z) - Improving Sharpness-Aware Minimization with Fisher Mask for Better
Generalization on Language Models [93.85178920914721]
限られた訓練コーパス上の微調整された大きな事前訓練された言語モデルは、通常、計算の貧弱さに悩まされる。
本稿では,新しい最適化手法であるFSAMを提案し,SAMの効率と性能を改善するためにフィッシャーマスクを導入した。
FSAMは4種類の事前訓練モデルにおいて,バニラSAMの平均スコア0.671.98を上回っていることを示す。
論文 参考訳(メタデータ) (2022-10-11T14:53:58Z) - Towards Efficient and Scalable Sharpness-Aware Minimization [81.22779501753695]
内部勾配の上昇を周期的に計算する新しいアルゴリズム LookSAM を提案する。
LookSAMはSAMと同じような精度を実現し、非常に高速である。
Vision Transformer(ViTs)のトレーニングでバッチサイズのスケールアップに成功したのは,私たちが初めてです。
論文 参考訳(メタデータ) (2022-03-05T11:53:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。