論文の概要: Show-o: One Single Transformer to Unify Multimodal Understanding and Generation
- arxiv url: http://arxiv.org/abs/2408.12528v3
- Date: Wed, 11 Sep 2024 11:47:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 20:12:08.943174
- Title: Show-o: One Single Transformer to Unify Multimodal Understanding and Generation
- Title(参考訳): Show-o:マルチモーダル理解と生成を統一するシングルトランス
- Authors: Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, Mike Zheng Shou,
- Abstract要約: マルチモーダル理解と生成を統一する統一変換器,すなわちShow-oを提案する。
完全自己回帰モデルとは異なり、Show-oは自己回帰と(離散的な)拡散モデリングを統一し、様々な混合モダリティの入力と出力を適応的に処理する。
- 参考スコア(独自算出の注目度): 24.58881004205822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a unified transformer, i.e., Show-o, that unifies multimodal understanding and generation. Unlike fully autoregressive models, Show-o unifies autoregressive and (discrete) diffusion modeling to adaptively handle inputs and outputs of various and mixed modalities. The unified model flexibly supports a wide range of vision-language tasks including visual question-answering, text-to-image generation, text-guided inpainting/extrapolation, and mixed-modality generation. Across various benchmarks, it demonstrates comparable or superior performance to existing individual models with an equivalent or larger number of parameters tailored for understanding or generation. This significantly highlights its potential as a next-generation foundation model. Code and models are released at https://github.com/showlab/Show-o.
- Abstract(参考訳): マルチモーダル理解と生成を統一する統一変換器,すなわちShow-oを提案する。
完全自己回帰モデルとは異なり、Show-oは自己回帰と(離散的な)拡散モデリングを統一し、様々な混合モダリティの入力と出力を適応的に処理する。
統一されたモデルは、視覚的質問応答、テキスト・ツー・イメージ生成、テキスト誘導インペイント/抽出、混合モダリティ生成など、幅広い視覚言語タスクを柔軟にサポートする。
様々なベンチマークで、既存の個々のモデルに匹敵する、あるいは優れたパフォーマンスを示しており、同じまたは多くのパラメータが理解や生成用に調整されている。
これは次世代のファウンデーションモデルとしての可能性を著しく強調している。
コードとモデルはhttps://github.com/showlab/Show-o.comで公開されている。
関連論文リスト
- A Simple Approach to Unifying Diffusion-based Conditional Generation [63.389616350290595]
多様な条件生成タスクを処理するための、シンプルで統一されたフレームワークを導入します。
提案手法は,異なる推論時間サンプリング方式による多目的化を実現する。
我々のモデルは、非親密なアライメントや粗い条件付けのような追加機能をサポートしています。
論文 参考訳(メタデータ) (2024-10-15T09:41:43Z) - ACE: All-round Creator and Editor Following Instructions via Diffusion Transformer [40.32254040909614]
視覚生成タスクのための全ラウンドクリエータとエディタであるACEを提案する。
まず、Long-Context Condition Unit (LCU)と呼ばれる統一条件形式を導入する。
次に,LCUを入力として使用するトランスフォーマーに基づく新しい拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-09-30T17:56:27Z) - Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining [48.98105914356609]
ルミナ-mGPT (Lumina-mGPT) は、様々な視覚と言語を扱える多モード自動回帰モデルのファミリーである。
我々は,Ominiponent Supervised Finetuningを導入し,Lumina-mGPTを全能タスク統一をシームレスに達成する基礎モデルに変換する。
論文 参考訳(メタデータ) (2024-08-05T17:46:53Z) - Diffusion Models For Multi-Modal Generative Modeling [32.61765315067488]
本稿では,共通拡散空間における統一多モード拡散モデルを構築することにより,拡散モデルを定義するための原理的手法を提案する。
本稿では,画像遷移,マスクイメージトレーニング,共同画像ラベル,共同画像表現生成モデリングなどのフレームワークを検証するために,複数のマルチモーダル生成設定を提案する。
論文 参考訳(メタデータ) (2024-07-24T18:04:17Z) - ANOLE: An Open, Autoregressive, Native Large Multimodal Models for Interleaved Image-Text Generation [27.773146599559286]
Anoleは、インターリーブ画像テキスト生成のための、オープンで自己回帰的で、ネイティブな大規模マルチモーダルモデルである。
当社は、モデル、トレーニングフレームワーク、チューニングデータなどをオープンソース化しました。
論文 参考訳(メタデータ) (2024-07-08T17:08:02Z) - Many-to-many Image Generation with Auto-regressive Diffusion Models [59.5041405824704]
本稿では,与えられた画像集合から関連画像系列を生成可能な多対多画像生成のためのドメイン汎用フレームワークを提案する。
我々は,25個の相互接続された画像を含む12Mの合成マルチイメージサンプルを含む,新しい大規模マルチイメージデータセットMISを提案する。
我々はM2Mを学習し、M2Mは多対多生成のための自己回帰モデルであり、各画像は拡散フレームワーク内でモデル化される。
論文 参考訳(メタデータ) (2024-04-03T23:20:40Z) - Explaining latent representations of generative models with large multimodal models [5.9908087713968925]
データ生成潜在因子の解釈可能な表現を学習することは、人工知能の発展にとって重要なトピックである。
大規模マルチモーダルモデルを用いた生成モデルにおいて,各潜伏変数を包括的に記述するフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-02T19:28:33Z) - Dissecting Multimodality in VideoQA Transformer Models by Impairing Modality Fusion [54.33764537135906]
VideoQA Transformerモデルは標準ベンチマークで競合性能を示す。
これらのモデルはビデオとテキストからリッチなマルチモーダル構造とダイナミックスを一緒に捉えていますか?
彼らはバイアスと刺激的な特徴を利用して高いスコアを達成していますか?
論文 参考訳(メタデータ) (2023-06-15T06:45:46Z) - BLIP-Diffusion: Pre-trained Subject Representation for Controllable
Text-to-Image Generation and Editing [73.74570290836152]
BLIP-Diffusionはマルチモーダル制御をサポートする新しい主観駆動画像生成モデルである。
他の主観駆動生成モデルとは異なり、BLIP-Diffusionは主観表現を提供するために事前訓練された新しいマルチモーダルエンコーダを導入する。
論文 参考訳(メタデータ) (2023-05-24T04:51:04Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
本稿では,「モダリティ変換」タスクと「マルチモダリティ生成」タスクの両方を実行することができる統一型マルチモーダル生成モデルを提案する。
具体的には,マルチモーダル信号の離散拡散過程を統一遷移行列を用いて統一する。
提案手法は, 様々な生成タスクにおいて, 最先端のソリューションと同等に動作可能である。
論文 参考訳(メタデータ) (2022-11-27T14:46:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。