論文の概要: Show-o: One Single Transformer to Unify Multimodal Understanding and Generation
- arxiv url: http://arxiv.org/abs/2408.12528v6
- Date: Mon, 21 Oct 2024 00:33:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 05:37:29.224336
- Title: Show-o: One Single Transformer to Unify Multimodal Understanding and Generation
- Title(参考訳): Show-o:マルチモーダル理解と生成を統一するシングルトランス
- Authors: Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, Mike Zheng Shou,
- Abstract要約: マルチモーダル理解と生成を統一する統一変換器,すなわちShow-oを提案する。
完全自己回帰モデルとは異なり、Show-oは自己回帰と(離散的な)拡散モデリングを統一し、様々な混合モダリティの入力と出力を適応的に処理する。
- 参考スコア(独自算出の注目度): 24.58881004205822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a unified transformer, i.e., Show-o, that unifies multimodal understanding and generation. Unlike fully autoregressive models, Show-o unifies autoregressive and (discrete) diffusion modeling to adaptively handle inputs and outputs of various and mixed modalities. The unified model flexibly supports a wide range of vision-language tasks including visual question-answering, text-to-image generation, text-guided inpainting/extrapolation, and mixed-modality generation. Across various benchmarks, it demonstrates comparable or superior performance to existing individual models with an equivalent or larger number of parameters tailored for understanding or generation. This significantly highlights its potential as a next-generation foundation model. Code and models are released at https://github.com/showlab/Show-o.
- Abstract(参考訳): マルチモーダル理解と生成を統一する統一変換器,すなわちShow-oを提案する。
完全自己回帰モデルとは異なり、Show-oは自己回帰と(離散的な)拡散モデリングを統一し、様々な混合モダリティの入力と出力を適応的に処理する。
統一されたモデルは、視覚的質問応答、テキスト・ツー・イメージ生成、テキスト誘導インペイント/抽出、混合モダリティ生成など、幅広い視覚言語タスクを柔軟にサポートする。
様々なベンチマークで、既存の個々のモデルに匹敵する、あるいは優れたパフォーマンスを示しており、同じまたは多くのパラメータが理解や生成用に調整されている。
これは次世代のファウンデーションモデルとしての可能性を著しく強調している。
コードとモデルはhttps://github.com/showlab/Show-o.comで公開されている。
関連論文リスト
- EditAR: Unified Conditional Generation with Autoregressive Models [58.093860528672735]
本稿では,条件付き画像生成タスクのための単一の統合自己回帰フレームワークであるEditARを提案する。
このモデルは、画像と命令の両方を入力として取り、バニラの次のパラダイムで編集された画像トークンを予測する。
確立されたベンチマークにおいて,様々なタスクにまたがる実効性を評価し,様々なタスク固有の手法に対する競争性能を示す。
論文 参考訳(メタデータ) (2025-01-08T18:59:35Z) - Dual Diffusion for Unified Image Generation and Understanding [32.7554623473768]
マルチモーダル理解と生成のための大規模かつ完全なエンドツーエンド拡散モデルを提案する。
我々は、画像とテキストの条件付き確率を同時にトレーニングするクロスモーダル最大推定フレームワークを活用する。
我々のモデルは、最近の統合画像理解・生成モデルと比較して、競争性能が向上した。
論文 参考訳(メタデータ) (2024-12-31T05:49:00Z) - Multimodal Latent Language Modeling with Next-Token Diffusion [111.93906046452125]
マルチモーダル生成モデルは、離散データ(テキストやコードなど)と連続データ(画像、オーディオ、ビデオなど)の両方を扱う統一的なアプローチを必要とする。
因果変換器を用いて連続データと離散データをシームレスに統合する潜在言語モデリング(LatentLM)を提案する。
論文 参考訳(メタデータ) (2024-12-11T18:57:32Z) - ACE: All-round Creator and Editor Following Instructions via Diffusion Transformer [40.32254040909614]
視覚生成タスクのための全ラウンドクリエータとエディタであるACEを提案する。
まず、Long-Context Condition Unit (LCU)と呼ばれる統一条件形式を導入する。
次に,LCUを入力として使用するトランスフォーマーに基づく新しい拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-09-30T17:56:27Z) - Lumina-mGPT: Illuminate Flexible Photorealistic Text-to-Image Generation with Multimodal Generative Pretraining [48.98105914356609]
ルミナ-mGPT (Lumina-mGPT) は、様々な視覚と言語を扱える多モード自動回帰モデルのファミリーである。
我々は,Ominiponent Supervised Finetuningを導入し,Lumina-mGPTを全能タスク統一をシームレスに達成する基礎モデルに変換する。
論文 参考訳(メタデータ) (2024-08-05T17:46:53Z) - Diffusion Models For Multi-Modal Generative Modeling [32.61765315067488]
本稿では,共通拡散空間における統一多モード拡散モデルを構築することにより,拡散モデルを定義するための原理的手法を提案する。
本稿では,画像遷移,マスクイメージトレーニング,共同画像ラベル,共同画像表現生成モデリングなどのフレームワークを検証するために,複数のマルチモーダル生成設定を提案する。
論文 参考訳(メタデータ) (2024-07-24T18:04:17Z) - Dissecting Multimodality in VideoQA Transformer Models by Impairing Modality Fusion [54.33764537135906]
VideoQA Transformerモデルは標準ベンチマークで競合性能を示す。
これらのモデルはビデオとテキストからリッチなマルチモーダル構造とダイナミックスを一緒に捉えていますか?
彼らはバイアスと刺激的な特徴を利用して高いスコアを達成していますか?
論文 参考訳(メタデータ) (2023-06-15T06:45:46Z) - BLIP-Diffusion: Pre-trained Subject Representation for Controllable
Text-to-Image Generation and Editing [73.74570290836152]
BLIP-Diffusionはマルチモーダル制御をサポートする新しい主観駆動画像生成モデルである。
他の主観駆動生成モデルとは異なり、BLIP-Diffusionは主観表現を提供するために事前訓練された新しいマルチモーダルエンコーダを導入する。
論文 参考訳(メタデータ) (2023-05-24T04:51:04Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
本稿では,「モダリティ変換」タスクと「マルチモダリティ生成」タスクの両方を実行することができる統一型マルチモーダル生成モデルを提案する。
具体的には,マルチモーダル信号の離散拡散過程を統一遷移行列を用いて統一する。
提案手法は, 様々な生成タスクにおいて, 最先端のソリューションと同等に動作可能である。
論文 参考訳(メタデータ) (2022-11-27T14:46:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。