論文の概要: Differentiable Logic Programming for Distant Supervision
- arxiv url: http://arxiv.org/abs/2408.12591v1
- Date: Thu, 22 Aug 2024 17:55:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 12:52:30.686309
- Title: Differentiable Logic Programming for Distant Supervision
- Title(参考訳): 距離スーパービジョンのための微分可能論理プログラミング
- Authors: Akihiro Takemura, Katsumi Inoue,
- Abstract要約: 我々はニューラル・シンボリックAI(NeSy)におけるニューラルネットワークと論理プログラミングを統合する新しい手法を提案する。
従来の手法とは違って,提案手法はラベルの欠落を推論するシンボリック・ソルバに依存しない。
この方法は、遠隔の監督下でより効率的な学習を容易にする。
- 参考スコア(独自算出の注目度): 4.820391833117535
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new method for integrating neural networks with logic programming in Neural-Symbolic AI (NeSy), aimed at learning with distant supervision, in which direct labels are unavailable. Unlike prior methods, our approach does not depend on symbolic solvers for reasoning about missing labels. Instead, it evaluates logical implications and constraints in a differentiable manner by embedding both neural network outputs and logic programs into matrices. This method facilitates more efficient learning under distant supervision. We evaluated our approach against existing methods while maintaining a constant volume of training data. The findings indicate that our method not only matches or exceeds the accuracy of other methods across various tasks but also speeds up the learning process. These results highlight the potential of our approach to enhance both accuracy and learning efficiency in NeSy applications.
- Abstract(参考訳): 我々は,ニューラル・シンボリックAI(Near-Symbolic AI,NeSy)において,ニューラルネットワークと論理プログラミングを統合する新しい手法を提案する。
従来の手法とは違って,提案手法はラベルの欠落を推論するシンボリック・ソルバに依存しない。
代わりに、ニューラルネットワークの出力と論理プログラムの両方を行列に埋め込むことで、論理的含意と制約を異なる方法で評価する。
この方法は、遠隔の監督下でより効率的な学習を容易にする。
一定量のトレーニングデータを維持しながら,既存の手法に対するアプローチを評価した。
その結果,本手法は様々なタスクにまたがる他の手法の精度に適合するだけでなく,学習プロセスの高速化にも寄与することがわかった。
これらの結果は,NeSyアプリケーションにおける精度と学習効率を両立させるアプローチの可能性を強調している。
関連論文リスト
- Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - NeuralFastLAS: Fast Logic-Based Learning from Raw Data [54.938128496934695]
シンボリック・ルール学習者は解釈可能な解を生成するが、入力を記号的に符号化する必要がある。
ニューロシンボリックアプローチは、ニューラルネットワークを使用して生データを潜在シンボリック概念にマッピングすることで、この問題を克服する。
我々は,ニューラルネットワークを記号学習者と共同でトレーニングする,スケーラブルで高速なエンドツーエンドアプローチであるNeuralFastLASを紹介する。
論文 参考訳(メタデータ) (2023-10-08T12:33:42Z) - Injecting Logical Constraints into Neural Networks via Straight-Through
Estimators [5.6613898352023515]
ニューラルネットワーク学習に離散的な論理的制約を注入することは、ニューロシンボリックAIにおける大きな課題の1つだ。
ニューラルネットワークの学習に論理的制約を組み込むために、バイナリニューラルネットワークをトレーニングするために導入されたストレートスルー推定器が効果的に適用できることがわかった。
論文 参考訳(メタデータ) (2023-07-10T05:12:05Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - Learning with Holographic Reduced Representations [28.462635977110413]
Holographic Reduced Representations (HRR)は、実数値ベクトル上でシンボリックAIを実行する方法である。
本稿では,ハイブリッド型ニューラルシンボリック・アプローチが学習に有効かどうかを理解するために,このアプローチを再考する。
論文 参考訳(メタデータ) (2021-09-05T19:37:34Z) - Reinforcement Learning with External Knowledge by using Logical Neural
Networks [67.46162586940905]
論理ニューラルネットワーク(LNN)と呼ばれる最近のニューラルシンボリックフレームワークは、ニューラルネットワークとシンボリックロジックの両方のキープロパティを同時に提供することができる。
外部知識ソースからのモデルフリー強化学習を可能にする統合手法を提案する。
論文 参考訳(メタデータ) (2021-03-03T12:34:59Z) - Training Binary Neural Networks using the Bayesian Learning Rule [19.01146578435531]
二分重のニューラルネットワークは計算効率が良く、ハードウェアに優しいが、そのトレーニングには離散的な最適化の問題が伴うため、難しい。
本稿では、既存のアプローチを正当化し、拡張するバイナリニューラルネットワークをトレーニングするための原則的アプローチを提案する。
私たちの研究は、既存のアプローチを正当化し拡張するバイナリニューラルネットワークをトレーニングするための原則化されたアプローチを提供します。
論文 参考訳(メタデータ) (2020-02-25T10:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。