Controllable Text Generation for Large Language Models: A Survey
- URL: http://arxiv.org/abs/2408.12599v1
- Date: Thu, 22 Aug 2024 17:59:04 GMT
- Title: Controllable Text Generation for Large Language Models: A Survey
- Authors: Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao Song, Jiawei Yang, Simin Niu, Jie Hu, Dan Liu, Shunyu Yao, Feiyu Xiong, Zhiyu Li,
- Abstract summary: This paper systematically reviews the latest advancements in Controllable Text Generation for Large Language Models.
We categorize CTG tasks into two primary types: content control and control.
We address key challenges in current research, including reduced fluency and practicality.
- Score: 27.110528099257156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Natural Language Processing (NLP), Large Language Models (LLMs) have demonstrated high text generation quality. However, in real-world applications, LLMs must meet increasingly complex requirements. Beyond avoiding misleading or inappropriate content, LLMs are also expected to cater to specific user needs, such as imitating particular writing styles or generating text with poetic richness. These varied demands have driven the development of Controllable Text Generation (CTG) techniques, which ensure that outputs adhere to predefined control conditions--such as safety, sentiment, thematic consistency, and linguistic style--while maintaining high standards of helpfulness, fluency, and diversity. This paper systematically reviews the latest advancements in CTG for LLMs, offering a comprehensive definition of its core concepts and clarifying the requirements for control conditions and text quality. We categorize CTG tasks into two primary types: content control and attribute control. The key methods are discussed, including model retraining, fine-tuning, reinforcement learning, prompt engineering, latent space manipulation, and decoding-time intervention. We analyze each method's characteristics, advantages, and limitations, providing nuanced insights for achieving generation control. Additionally, we review CTG evaluation methods, summarize its applications across domains, and address key challenges in current research, including reduced fluency and practicality. We also propose several appeals, such as placing greater emphasis on real-world applications in future research. This paper aims to offer valuable guidance to researchers and developers in the field. Our reference list and Chinese version are open-sourced at https://github.com/IAAR-Shanghai/CTGSurvey.
Related papers
- Adaptable Logical Control for Large Language Models [68.27725600175013]
Ctrl-G is an adaptable framework that facilitates tractable and flexible control of model generation at inference time.
We show that Ctrl-G, when applied to a TULU2-7B model, outperforms GPT3.5 and GPT4 on the task of interactive text editing.
arXiv Detail & Related papers (2024-06-19T23:47:59Z) - CELA: Cost-Efficient Language Model Alignment for CTR Prediction [71.85120354973073]
Click-Through Rate (CTR) prediction holds a paramount position in recommender systems.
Recent efforts have sought to mitigate these challenges by integrating Pre-trained Language Models (PLMs)
We propose textbfCost-textbfEfficient textbfLanguage Model textbfAlignment (textbfCELA) for CTR prediction.
arXiv Detail & Related papers (2024-05-17T07:43:25Z) - CEV-LM: Controlled Edit Vector Language Model for Shaping Natural
Language Generations [5.148810760938979]
We introduce CEV-LM - a lightweight, semi-autoregressive language model that utilizes constrained edit vectors to control three complementary metrics.
We study an extensive set of state-of-the-art CTG models and find that CEV-LM provides significantly more targeted and precise control of these three metrics.
arXiv Detail & Related papers (2024-02-22T05:07:31Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Successor Features for Efficient Multisubject Controlled Text Generation [48.37713738712319]
We introduce SF-GEN, which is grounded in two primary concepts: successor features (SFs) and language model rectification.
SF-GEN seamlessly integrates the two to enable dynamic steering of text generation with no need to alter the LLM's parameters.
To the best of our knowledge, our research represents the first application of successor features in text generation.
arXiv Detail & Related papers (2023-11-03T00:17:08Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
This study investigates constrained text generation for large language models (LLMs)
Our research mainly focuses on mainstream open-source LLMs, categorizing constraints into lexical, structural, and relation-based types.
Results illuminate LLMs' capacity and deficiency to incorporate constraints and provide insights for future developments in constrained text generation.
arXiv Detail & Related papers (2023-10-25T03:58:49Z) - Automatic and Human-AI Interactive Text Generation [27.05024520190722]
This tutorial aims to provide an overview of the state-of-the-art natural language generation research.
Text-to-text generation tasks are more constrained in terms of semantic consistency and targeted language styles.
arXiv Detail & Related papers (2023-10-05T20:26:15Z) - Deliberate then Generate: Enhanced Prompting Framework for Text
Generation [70.10319005141888]
Deliberate then Generate (DTG) prompting framework consists of error detection instructions and candidates that may contain errors.
We conduct extensive experiments on 20+ datasets across 7 text generation tasks, including summarization, translation, dialogue, and more.
We show that DTG consistently outperforms existing prompting methods and achieves state-of-the-art performance on multiple text generation tasks.
arXiv Detail & Related papers (2023-05-31T13:23:04Z) - An Overview on Controllable Text Generation via Variational
Auto-Encoders [15.97186478109836]
Recent advances in neural-based generative modeling have reignited the hopes of having computer systems capable of conversing with humans.
Latent variable models (LVM) such as variational auto-encoders (VAEs) are designed to characterize the distributional pattern of textual data.
This overview gives an introduction to existing generation schemes, problems associated with text variational auto-encoders, and a review of several applications about the controllable generation.
arXiv Detail & Related papers (2022-11-15T07:36:11Z) - A Survey of Controllable Text Generation using Transformer-based
Pre-trained Language Models [21.124096884958337]
Controllable Text Generation (CTG) is emerging area in the field of natural language generation (NLG)
We present a systematic critical review on the common tasks, main approaches, and evaluation methods in this area.
We discuss the challenges that the field is facing, and put forward various promising future directions.
arXiv Detail & Related papers (2022-01-14T08:32:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.