論文の概要: A frugal Spiking Neural Network for unsupervised classification of continuous multivariate temporal data
- arxiv url: http://arxiv.org/abs/2408.12608v1
- Date: Thu, 8 Aug 2024 08:15:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 17:12:14.455133
- Title: A frugal Spiking Neural Network for unsupervised classification of continuous multivariate temporal data
- Title(参考訳): 連続多変量時間データの教師なし分類のためのフラガアルスパイクニューラルネットワーク
- Authors: Sai Deepesh Pokala, Marie Bernert, Takuya Nanami, Takashi Kohno, Timothée Lévi, Blaise Yvert,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は神経型であり、進化する膜電位を持つより生物学的に可塑性なニューロンを使用する。
本稿では,連続データにおける多変量時間パターンの完全教師なし識別と分類のために設計されたFragal Single-layer SNNを紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As neural interfaces become more advanced, there has been an increase in the volume and complexity of neural data recordings. These interfaces capture rich information about neural dynamics that call for efficient, real-time processing algorithms to spontaneously extract and interpret patterns of neural dynamics. Moreover, being able to do so in a fully unsupervised manner is critical as patterns in vast streams of neural data might not be easily identifiable by the human eye. Formal Deep Neural Networks (DNNs) have come a long way in performing pattern recognition tasks for various static and sequential pattern recognition applications. However, these networks usually require large labeled datasets for training and have high power consumption preventing their future embedding in active brain implants. An alternative aimed at addressing these issues are Spiking Neural Networks (SNNs) which are neuromorphic and use more biologically plausible neurons with evolving membrane potentials. In this context, we introduce here a frugal single-layer SNN designed for fully unsupervised identification and classification of multivariate temporal patterns in continuous data with a sequential approach. We show that, with only a handful number of neurons, this strategy is efficient to recognize highly overlapping multivariate temporal patterns, first on simulated data, and then on Mel Cepstral representations of speech sounds and finally on multichannel neural data. This approach relies on several biologically inspired plasticity rules, including Spike-timing-dependent plasticity (STDP), Short-term plasticity (STP) and intrinsic plasticity (IP). These results pave the way towards highly frugal SNNs for fully unsupervised and online-compatible learning of complex multivariate temporal patterns for future embedding in dedicated very-low power hardware.
- Abstract(参考訳): 神経インタフェースが進歩するにつれて、ニューラルデータ記録のボリュームと複雑さが増大している。
これらのインターフェースは、ニューラルネットワークのパターンを自発的に抽出し解釈するために、効率的なリアルタイム処理アルゴリズムを要求する神経力学に関する豊富な情報をキャプチャする。
さらに、膨大なニューラルネットワークストリームのパターンが人間の目で容易に識別できないため、完全に教師なしの方法でそれを行うことが可能であることは、極めて重要である。
様々な静的およびシーケンシャルなパターン認識アプリケーションのためにパターン認識タスクを実行する上で、フォーマルディープニューラルネットワーク(DNN)は長い道のりを歩んでいる。
しかしながら、これらのネットワークは通常、トレーニングのために大きなラベル付きデータセットを必要とし、将来の脳インプラントへの埋め込みを防ぐために高い消費電力を持つ。
これらの問題に対処する別の方法として、神経型であり、進化する膜電位を持つより生物学的に可塑性なニューロンを使用するSpking Neural Networks (SNN)がある。
ここでは、連続データにおける多変量時間パターンの完全な教師なし識別と分類を、逐次的アプローチで行うために設計されたフラジアル単層SNNを紹介する。
少数のニューロンしか持たないこの戦略は,まず模擬データから,次に音声のメルケプストラム表現,最後にはマルチチャネルニューラルデータにおいて,重なり合う多変量時間パターンの認識に有効であることを示す。
このアプローチは、スパイク刺激依存性可塑性(STDP)、短期可塑性(STP)、本質的可塑性(IP)など、生物学的にインスパイアされた可塑性規則に依存している。
これらの結果から,複雑な多変量時間パターンの完全教師なしおよびオンライン互換学習のための,高自由度SNNへの道を開いた。
関連論文リスト
- The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Physically constrained neural networks to solve the inverse problem for
neuron models [0.29005223064604074]
システム生物学とシステム神経生理学は、生体医学科学における多くの重要な応用のための強力なツールである。
ディープニューラルネットワークの分野における最近の進歩は、非線形で普遍的な近似を定式化する可能性を示している。
論文 参考訳(メタデータ) (2022-09-24T12:51:15Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Deep inference of latent dynamics with spatio-temporal super-resolution
using selective backpropagation through time [15.648009434801885]
現代の神経インタフェースは、脳回路内の100万のニューロンの活動をアクセスすることができる。
帯域幅制限はしばしば、より大きな空間サンプリング(より多くのチャンネルやピクセル)と時間サンプリングの頻度の間のトレードオフを生み出す。
ここでは、ニューロン間の関係を利用して、ニューロン時系列における超解像を得ることが可能であることを実証する。
論文 参考訳(メタデータ) (2021-10-29T20:18:29Z) - Neuromorphic Algorithm-hardware Codesign for Temporal Pattern Learning [11.781094547718595]
複雑な空間時間パターンを学習するためにSNNを訓練できるLeaky IntegrateとFireニューロンの効率的なトレーニングアルゴリズムを導出する。
我々は,ニューロンとシナプスのメムリスタに基づくネットワークのためのCMOS回路実装を開発した。
論文 参考訳(メタデータ) (2021-04-21T18:23:31Z) - A Deep 2-Dimensional Dynamical Spiking Neuronal Network for Temporal
Encoding trained with STDP [10.982390333064536]
哺乳動物の大脳皮質を模倣する動的・カオス的な活動を持つ大きな層状SNNは、時間的データから情報を符号化することができることを示す。
ネットワーク重みに固有のランダム性は、STDPによる自己組織化後に入力される時間データを符号化するグループを形成することができると主張している。
情報伝達の指標として,ネットワークエントロピーの観点からネットワークを解析する。
論文 参考訳(メタデータ) (2020-09-01T17:12:18Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal
Learning of Deep Spiking Neural Network [7.503685643036081]
空間的時間特性を持つ生物解析可能なSNNモデルは複雑な力学系である。
ニューロン非線形性を持つ無限インパルス応答(IIR)フィルタのネットワークとしてSNNを定式化する。
本稿では,最適シナプスフィルタカーネルと重みを求めることにより,時空間パターンを学習できる学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-19T01:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。