Educational Customization by Homogenous Grouping of e-Learners based on their Learning Styles
- URL: http://arxiv.org/abs/2408.12619v1
- Date: Fri, 9 Aug 2024 14:06:42 GMT
- Title: Educational Customization by Homogenous Grouping of e-Learners based on their Learning Styles
- Authors: Mohammadreza amiri, GholamAli montazer, Ebrahim Mousavi,
- Abstract summary: We propose using the Felder-Silverman model, which is based on learning styles, to group similar learners.
By identifying the learning styles of the learners, co-like learning groups are formed, and each group receives adaptive content based on their preferences, needs, talents, and abilities.
In terms of "educational success," the weighted average score of the experimental group is 17.65 out of 20, while the control group achieves a score of 12.6 out of 20.
- Score: 0.4915744683251149
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The E-learning environment offers greater flexibility compared to face-to-face interactions, allowing for adapting educational content to meet learners' individual needs and abilities through personalization and customization of e-content and the educational process. Despite the advantages of this approach, customizing the learning environment can reduce the costs of tutoring systems for similar learners by utilizing the same content and process for co-like learning groups. Various indicators for grouping learners exist, but many of them are conceptual, uncertain, and subject to change over time. In this article, we propose using the Felder-Silverman model, which is based on learning styles, to group similar learners. Additionally, we model the behaviors and actions of e-learners in a network environment using Fuzzy Set Theory (FST). After identifying the learning styles of the learners, co-like learning groups are formed, and each group receives adaptive content based on their preferences, needs, talents, and abilities. By comparing the results of the experimental and control groups, we determine the effectiveness of the proposed grouping method. In terms of "educational success," the weighted average score of the experimental group is 17.65 out of 20, while the control group achieves a score of 12.6 out of 20. Furthermore, the "educational satisfaction" of the experimental group is 67%, whereas the control group's satisfaction level is 37%.
Related papers
- Exploring Factors Affecting Student Learning Satisfaction during COVID-19 in South Korea [0.0]
This study aimed to understand several facets related to student learning preferences and satisfaction during the pandemic.
Data gathered included students' gender, study major, satisfaction and motivation levels when learning, perceived performance, emotional state and learning environment.
arXiv Detail & Related papers (2024-07-12T14:28:11Z) - Can machine learning solve the challenge of adaptive learning and the individualization of learning paths? A field experiment in an online learning platform [0.8437187555622164]
The individualization of learning contents based on digital technologies promises large individual and social benefits.
We conduct a randomized controlled trial on a large digital self-learning platform.
We develop an algorithm based on two convolutional neural networks that assigns tasks to $4,365$ learners according to their learning paths.
arXiv Detail & Related papers (2024-07-03T14:04:05Z) - Fair and skill-diverse student group formation via constrained k-way
graph partitioning [65.29889537564455]
This work introduces an unsupervised algorithm for fair and skill-diverse student group formation.
The skill sets of students are determined using unsupervised dimensionality reduction of course mark data via the Laplacian eigenmap.
The problem is formulated as a constrained graph partitioning problem, whereby the diversity of skill sets in each group are maximised.
arXiv Detail & Related papers (2023-01-12T14:02:49Z) - Mitigating Biases in Student Performance Prediction via Attention-Based
Personalized Federated Learning [7.040747348755578]
Traditional learning-based approaches to student modeling generalize poorly to underrepresented student groups due to biases in data availability.
We propose a methodology for predicting student performance from their online learning activities that optimize inference accuracy over different demographic groups such as race and gender.
arXiv Detail & Related papers (2022-08-02T00:22:20Z) - Unsupervised Domain Adaptive Person Re-Identification via Human Learning
Imitation [67.52229938775294]
In past years, researchers propose to utilize the teacher-student framework in their methods to decrease the domain gap between different person re-identification datasets.
Inspired by recent teacher-student framework based methods, we propose to conduct further exploration to imitate the human learning process from different aspects.
arXiv Detail & Related papers (2021-11-28T01:14:29Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Constructing a personalized learning path using genetic algorithms
approach [0.0]
This paper presents the possibility of constructing personalized learning paths using genetic algorithm-based model.
Experiments show that the genetic algorithm is suitable to generate optimal learning paths based on learning object difficulty level, duration, rating, and relation degree.
arXiv Detail & Related papers (2021-04-22T18:43:47Z) - Representation Matters: Assessing the Importance of Subgroup Allocations
in Training Data [85.43008636875345]
We show that diverse representation in training data is key to increasing subgroup performances and achieving population level objectives.
Our analysis and experiments describe how dataset compositions influence performance and provide constructive results for using trends in existing data, alongside domain knowledge, to help guide intentional, objective-aware dataset design.
arXiv Detail & Related papers (2021-03-05T00:27:08Z) - Emerging Trends in Federated Learning: From Model Fusion to Federated X Learning [65.06445195580622]
Federated learning is a new paradigm that decouples data collection and model training via multi-party computation and model aggregation.
We conduct a focused survey of federated learning in conjunction with other learning algorithms.
arXiv Detail & Related papers (2021-02-25T15:18:13Z) - Towards Improved and Interpretable Deep Metric Learning via Attentive
Grouping [103.71992720794421]
Grouping has been commonly used in deep metric learning for computing diverse features.
We propose an improved and interpretable grouping method to be integrated flexibly with any metric learning framework.
arXiv Detail & Related papers (2020-11-17T19:08:24Z) - Collaborative Group Learning [42.31194030839819]
Collaborative learning has successfully applied knowledge transfer to guide a pool of small student networks towards robust local minima.
Previous approaches typically struggle with drastically aggravated student homogenization when the number of students rises.
We propose Collaborative Group Learning, an efficient framework that aims to diversify the feature representation and conduct an effective regularization.
arXiv Detail & Related papers (2020-09-16T14:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.