論文の概要: Joint Image De-noising and Enhancement for Satellite-Based SAR
- arxiv url: http://arxiv.org/abs/2408.12671v1
- Date: Tue, 6 Aug 2024 18:44:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 17:02:13.118122
- Title: Joint Image De-noising and Enhancement for Satellite-Based SAR
- Title(参考訳): 衛星SARの合同画像デノイズ化と拡張
- Authors: Shahrokh Hamidi,
- Abstract要約: 合成開口レーダ(SAR)データから再構成した画像は、乗算ノイズと低コントラストレベルに悩まされる。
本稿では,これらの欠点を同時に扱う手法を提案する。
実際、ノイズ除去とコントラスト強化のプロセスを統一されたアルゴリズムに組み合わせる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The reconstructed images from the Synthetic Aperture Radar (SAR) data suffer from multiplicative noise as well as low contrast level. These two factors impact the quality of the SAR images significantly and prevent any attempt to extract valuable information from the processed data. The necessity for mitigating these effects in the field of SAR imaging is of high importance. Therefore, in this paper, we address the aforementioned issues and propose a technique to handle these shortcomings simultaneously. In fact, we combine the de-noising and contrast enhancement processes into a unified algorithm. The image enhancement is performed based on the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique. The verification of the proposed algorithm is performed by experimental results based on the data that has been collected from the European Space Agency's ERS-2 satellite which operates in strip-map mode.
- Abstract(参考訳): 合成開口レーダ(SAR)データから再構成した画像は、乗算ノイズと低コントラストレベルに悩まされる。
これらの2つの要因は、SAR画像の品質に大きな影響を与え、処理されたデータから貴重な情報を抽出する試みを防ぐ。
SAR画像の分野でこれらの効果を緩和する必要性は非常に重要である。
そこで本稿では,上記の課題に対処し,これらの欠点を同時に対処する手法を提案する。
実際、ノイズ除去とコントラスト強化のプロセスを統一されたアルゴリズムに組み合わせる。
コントラスト限定適応ヒストグラム等化(CLAHE)技術に基づいて画像強調を行う。
提案アルゴリズムの検証は、欧州宇宙機関のESS-2衛星から収集したデータに基づいて、ストリップマップモードで動作する実験結果によって行われる。
関連論文リスト
- Retinex-RAWMamba: Bridging Demosaicing and Denoising for Low-Light RAW Image Enhancement [71.13353154514418]
低照度画像の強化、特に生ドメインからsRGBドメインへのマッピングのようなクロスドメインタスクは、依然として大きな課題である。
RAWMambaと呼ばれる新しいMambaスキャニング機構を提案する。
また,Retinex の先行したRetinex Decomposition Module (RDM) も提案する。
論文 参考訳(メタデータ) (2024-09-11T06:12:03Z) - Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation [5.578820789388206]
本稿では,Brownian Bridge Diffusion Model(BBDM)に基づく条件付き画像から画像への変換手法を提案する。
我々は、MSAWデータセット、ペアSAR、0.5m Very-High-Resolution (VHR) の光学画像収集に関する総合的な実験を行った。
論文 参考訳(メタデータ) (2024-08-15T05:43:46Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
これらの手法の主な課題は、コントラスト強調の正確な予測と現実的な画像の合成である。
コントラスト前の画像対とコントラスト後の画像対のサブトラクション画像に符号化されたコントラスト信号を利用することで、両課題に対処する。
各種スキャナー,フィールド強度,コントラストエージェントを用いた合成および実データに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-03-06T08:35:29Z) - SAR Despeckling via Regional Denoising Diffusion Probabilistic Model [6.154796320245652]
生成モデルに基づく領域分割拡散確率モデル(R-DDPM)
本稿では, 生成モデルに基づく領域分割拡散確率モデル (R-DDPM) を提案する。
論文 参考訳(メタデータ) (2024-01-06T04:34:46Z) - SAR2EO: A High-resolution Image Translation Framework with Denoising
Enhancement [10.11898520476921]
本稿では,低解像度画像から高解像度画像への変換を実現するためのフレームワークであるSAR2EOを提案する。
まず、高品質なEO画像を生成するために、粗大な発電機、マルチスケールの判別器、およびピクセル2pixHDモデルにおける対向損失を改善する。
次に,SAR画像のノイズを除去するデノナイジングモジュールを導入し,画像の構造情報を保存しながらノイズを抑制する。
論文 参考訳(メタデータ) (2023-04-08T03:39:51Z) - Deep Semantic Statistics Matching (D2SM) Denoising Network [70.01091467628068]
本稿では,Deep Semantic Statistics Matching (D2SM) Denoising Networkを紹介する。
事前訓練された分類ネットワークの意味的特徴を利用して、意味的特徴空間における明瞭な画像の確率的分布と暗黙的に一致させる。
識別画像のセマンティックな分布を学習することで,ネットワークの認知能力を大幅に向上させることを実証的に見出した。
論文 参考訳(メタデータ) (2022-07-19T14:35:42Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
本稿では,自己超越型ディープラーニングアルゴリズムSAR2SARを提案する。
時間的変化の補償と、スペックル統計に適応した損失関数に基づいて、SAR非特異化に適応する戦略を提示する。
提案アルゴリズムの可能性を示すために,実画像における結果について考察する。
論文 参考訳(メタデータ) (2020-06-26T15:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。