Transversal Clifford and T-gate codes of short length and high distance
- URL: http://arxiv.org/abs/2408.12752v3
- Date: Mon, 24 Mar 2025 00:37:45 GMT
- Title: Transversal Clifford and T-gate codes of short length and high distance
- Authors: Shubham P. Jain, Victor V. Albert,
- Abstract summary: We construct three kinds of codes encoding a single logical qubit for distances up to $31$.<n>To our knowledge, these are the smallest known triorthogonal codes for their respective distances.
- Score: 0.6138671548064355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The non-local interactions in several quantum device architectures allow for the realization of more compact quantum encodings while retaining the same degree of protection against noise. Anticipating that short to medium-length codes will soon be realizable, it is important to construct stabilizer codes that, for a given code distance, admit fault-tolerant implementations of logical gates with the fewest number of physical qubits. To this aim, we construct three kinds of codes encoding a single logical qubit for distances up to $31$. First, we construct the smallest known doubly even codes, all of which admit a transversal implementation of the Clifford group. Applying a doubling procedure [arXiv:1509.03239] to such codes yields the smallest known weak triply even codes for the same distances and number of encoded qubits. This second family of codes admit a transversal implementation of the logical $\texttt{T}$-gate. Relaxing the triply even property, we obtain our third family of triorthogonal codes with an even lower overhead at the cost of requiring additional Clifford gates to achieve the same logical operation. To our knowledge, these are the smallest known triorthogonal codes for their respective distances. While not qLDPC, the stabilizer generator weights of the code families with transversal $\texttt{T}$-gates scale roughly as the square root of their lengths.
Related papers
- Targeted Clifford logical gates for hypergraph product codes [61.269295538188636]
We construct explicit targeted logical gates for hypergraph product codes.
As a concrete example, we give logical circuits for the $[[18,2,3]]$ toric code.
arXiv Detail & Related papers (2024-11-26T02:32:44Z) - Measurement-free code-switching for low overhead quantum computation using permutation invariant codes [6.281229317487581]
We present a measurement-free code-switching protocol for universal quantum computation.
The novel non-Clifford gates enabled by this code-switching protocol enable implementation of a universal gate set more efficient than the Clifford$+T$ gate set.
arXiv Detail & Related papers (2024-11-20T09:16:07Z) - Transversal non-Clifford gates for quantum LDPC codes on sheaves [1.0878040851638]
A major goal in quantum computing is to build a fault-tolerant quantum computer.
One approach involves quantum low-density parity-check (qLDPC) codes that support non-Clifford gates.
arXiv Detail & Related papers (2024-10-18T17:31:19Z) - Geometric structure and transversal logic of quantum Reed-Muller codes [51.11215560140181]
In this paper, we aim to characterize the gates of quantum Reed-Muller (RM) codes by exploiting the well-studied properties of their classical counterparts.
A set of stabilizer generators for a RM code can be described via $X$ and $Z$ operators acting on subcubes of particular dimensions.
arXiv Detail & Related papers (2024-10-10T04:07:24Z) - SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
We present Safe Surgery by Identifying Pushouts (SSIP), an open-source lightweight Python package for automating surgery between qubit CSS codes.
Under the hood, it performs linear algebra over $mathbbF$ governed by universal constructions in the category of chain complexes.
We show that various logical measurements can be performed cheaply by surgery without sacrificing the high code distance.
arXiv Detail & Related papers (2024-07-12T16:50:01Z) - Logical Operators and Fold-Transversal Gates of Bivariate Bicycle Codes [1.8416014644193066]
Quantum low-density parity-check (qLDPC) codes offer a promising route to scalable fault-tolerant quantum computation with constant overhead.
Recent advancements have shown that qLDPC codes can outperform the quantum memory capability of surface codes even with near-term hardware.
arXiv Detail & Related papers (2024-07-04T14:49:35Z) - How much entanglement is needed for quantum error correction? [10.61261983484739]
It is commonly believed that logical states of quantum error-correcting codes have to be highly entangled.
Here we show that this belief may or may not be true depending on a particular code.
arXiv Detail & Related papers (2024-05-02T14:35:55Z) - Small Quantum Codes from Algebraic Extensions of Generalized Bicycle
Codes [4.299840769087443]
Quantum LDPC codes range from the surface code, which has a vanishing encoding rate, to very promising codes with constant encoding rate and linear distance.
We devise small quantum codes that are inspired by a subset of quantum LDPC codes, known as generalized bicycle (GB) codes.
arXiv Detail & Related papers (2024-01-15T10:38:13Z) - Improved rate-distance trade-offs for quantum codes with restricted
connectivity [34.95121779484252]
We study how the connectivity graph associated with a quantum code constrains the code parameters.
We establish a tighter dimension-distance trade-off as a function of the size of separators in the connectivity graph.
arXiv Detail & Related papers (2023-07-06T20:38:34Z) - Homological Quantum Rotor Codes: Logical Qubits from Torsion [51.9157257936691]
homological quantum rotor codes allow one to encode both logical rotors and logical qudits in the same block of code.
We show that the $0$-$pi$-qubit as well as Kitaev's current-mirror qubit are indeed small examples of such codes.
arXiv Detail & Related papers (2023-03-24T00:29:15Z) - Hierarchical memories: Simulating quantum LDPC codes with local gates [0.05156484100374058]
Constant-rate low-density parity-check (LDPC) codes are promising candidates for constructing efficient fault-tolerant quantum memories.
We construct a new family of hierarchical codes, that encode a number of logical qubits K = Omega(N/log(N)2.
Under conservative assumptions, we find that the hierarchical code outperforms the basic encoding where all logical qubits are encoded in the surface code.
arXiv Detail & Related papers (2023-03-08T18:48:12Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Morphing quantum codes [77.34726150561087]
We morph the 15-qubit Reed-Muller code to obtain the smallest known stabilizer code with a fault-tolerant logical $T$ gate.
We construct a family of hybrid color-toric codes by morphing the color code.
arXiv Detail & Related papers (2021-12-02T17:43:00Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - The cost of universality: A comparative study of the overhead of state
distillation and code switching with color codes [63.62764375279861]
We compare two leading FT implementations of the T gate in 2D color codes under circuit noise.
We find a circuit noise threshold of 0.07(1)% for the T gate via code switching, almost an order of magnitude below that achievable by state distillation in the same setting.
arXiv Detail & Related papers (2021-01-06T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.