論文の概要: Symmetric masking strategy enhances the performance of Masked Image Modeling
- arxiv url: http://arxiv.org/abs/2408.12772v1
- Date: Fri, 23 Aug 2024 00:15:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:19:03.144675
- Title: Symmetric masking strategy enhances the performance of Masked Image Modeling
- Title(参考訳): 対称マスキングによるマスク画像モデリングの性能向上
- Authors: Khanh-Binh Nguyen, Chae Jung Park,
- Abstract要約: Masked Image Modeling (MIM) は、ラベルのない画像から詳細な視覚表現を取得することに焦点を当てた自己教師付き学習の技法である。
モデルがグローバルな特徴とローカルな特徴を効果的に捉えるのに役立つ新しいマスキング戦略を提案する。
このマスキング戦略であるSymMIMに基づいて,MIMのためのトレーニングパイプラインを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Masked Image Modeling (MIM) is a technique in self-supervised learning that focuses on acquiring detailed visual representations from unlabeled images by estimating the missing pixels in randomly masked sections. It has proven to be a powerful tool for the preliminary training of Vision Transformers (ViTs), yielding impressive results across various tasks. Nevertheless, most MIM methods heavily depend on the random masking strategy to formulate the pretext task. This strategy necessitates numerous trials to ascertain the optimal dropping ratio, which can be resource-intensive, requiring the model to be pre-trained for anywhere between 800 to 1600 epochs. Furthermore, this approach may not be suitable for all datasets. In this work, we propose a new masking strategy that effectively helps the model capture global and local features. Based on this masking strategy, SymMIM, our proposed training pipeline for MIM is introduced. SymMIM achieves a new SOTA accuracy of 85.9\% on ImageNet using ViT-Large and surpasses previous SOTA across downstream tasks such as image classification, semantic segmentation, object detection, instance segmentation tasks, and so on.
- Abstract(参考訳): Masked Image Modeling (MIM) は、ランダムにマスキングされた部分の欠落したピクセルを推定することにより、ラベルのない画像から詳細な視覚表現を取得することに焦点を当てた自己教師あり学習のテクニックである。
視覚変換器(ViT)の予備訓練のための強力なツールであることが証明されており、様々なタスクで印象的な結果が得られる。
それでも、ほとんどのMIMメソッドは、プリテキストタスクを定式化するためのランダムマスキング戦略に大きく依存している。
この戦略は、資源集約的な最適降下比を確認するために多くの試行が必要であり、800から1600年代にかけて、モデルが事前訓練される必要がある。
さらに、このアプローチはすべてのデータセットに適していないかもしれない。
本研究では,グローバルな特徴とローカルな特徴を効果的に捕捉する新しいマスキング戦略を提案する。
このマスキング戦略であるSymMIMに基づいて,MIMのためのトレーニングパイプラインを提案する。
SymMIMは、ViT-Largeを使用してImageNet上で85.9\%の新しいSOTA精度を実現し、画像分類、セマンティックセグメンテーション、オブジェクト検出、インスタンスセグメンテーションタスクなどの下流タスクで以前のSOTAを上回っている。
関連論文リスト
- Semantic Refocused Tuning for Open-Vocabulary Panoptic Segmentation [42.020470627552136]
Open-vocabulary Panoptic segmentationは、イメージを意味のあるマスクに正確に分割することを目的とした、新たなタスクである。
マスク分類は、オープンボキャブ・パノプティクスのセグメンテーションにおける主要なパフォーマンスボトルネックである。
オープンボキャブ・パノプティクスのセグメンテーションを大幅に強化する新しいフレームワークであるセマンティック・リフォーカス・タニングを提案する。
論文 参考訳(メタデータ) (2024-09-24T17:50:28Z) - ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE)は、堅牢な自己管理フレームワークとして登場した。
データに依存しないColorMAEという手法を導入し、ランダムノイズをフィルタすることで異なる二元マスクパターンを生成する。
ランダムマスキングと比較して,下流タスクにおける戦略の優位性を示す。
論文 参考訳(メタデータ) (2024-07-17T22:04:00Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
自己教師付き学習は、ビジョントランスフォーマーネットワークの欲求を軽減できる。
所望のプロパティを統一する単段および単段のMOCAを提案する。
我々は,様々な評価プロトコルにおいて,低照度設定と強力な実験結果に対して,最先端の新たな結果を得る。
論文 参考訳(メタデータ) (2023-07-18T15:46:20Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
マスケ画像モデリングは視覚データに対する有望な自己教師型学習手法である。
本稿では,Gumbel-Softmax を用いて,対向学習マスク生成装置とマスク誘導画像モデリングプロセスとを相互接続するフレームワーク AutoMAE を提案する。
実験の結果,AutoMAEは,標準の自己監督型ベンチマークや下流タスクに対して,効果的な事前学習モデルを提供することがわかった。
論文 参考訳(メタデータ) (2023-03-12T05:28:55Z) - PixMIM: Rethinking Pixel Reconstruction in Masked Image Modeling [83.67628239775878]
Masked Image Modeling (MIM) は Masked Autoencoders (MAE) と BEiT の出現によって有望な進歩を遂げた。
本稿では,画素再構成の観点からMIMの基本解析を行う。
我々は,2つの戦略を包含する極めて単純で効果的な方法,weelmethodを提案する。
論文 参考訳(メタデータ) (2023-03-04T13:38:51Z) - Efficient Masked Autoencoders with Self-Consistency [34.7076436760695]
マスク付き画像モデリング(MIM)はコンピュータビジョンにおける強力な自己教師付き事前学習手法として認識されている。
本研究では,自己整合性(EMAE)を有する効率的なマスク付きオートエンコーダを提案し,事前学習効率を向上させる。
EMAEは、画像分類、オブジェクト検出、セマンティックセグメンテーションなど、さまざまな下流タスクにおける最先端の転送能力を一貫して取得する。
論文 参考訳(メタデータ) (2023-02-28T09:21:12Z) - Exploring the Coordination of Frequency and Attention in Masked Image Modeling [28.418445136155512]
Masked Image Modeling (MIM) はコンピュータビジョンにおける自己教師型学習を支配している。
本稿では,周波数・注意駆動型マスキング・スローング戦略 (FAMT) を提案する。
FAMTはプラグイン・アンド・プレイモジュールとしてシームレスに統合することができ、以前の作業を超えている。
論文 参考訳(メタデータ) (2022-11-28T14:38:19Z) - Adversarial Masking for Self-Supervised Learning [81.25999058340997]
自己教師付き学習のためのマスク付き画像モデル(MIM)フレームワークであるADIOSを提案する。
対向目的物を用いてマスキング機能と画像エンコーダを同時に学習する。
さまざまなタスクやデータセットに対する最先端の自己教師付き学習(SSL)メソッドを一貫して改善する。
論文 参考訳(メタデータ) (2022-01-31T10:23:23Z) - MST: Masked Self-Supervised Transformer for Visual Representation [52.099722121603506]
Transformerは自然言語処理(NLP)における自己教師型事前学習に広く利用されている。
我々は、画像の局所的コンテキストを明示的にキャプチャできる、MSTと呼ばれる新しいMasked Self-supervised Transformerアプローチを提案する。
MSTは、線形評価による300エポック事前トレーニングのみを使用して、DeiT-Sで76.9%のTop-1精度を達成する。
論文 参考訳(メタデータ) (2021-06-10T11:05:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。