論文の概要: La-SoftMoE CLIP for Unified Physical-Digital Face Attack Detection
- arxiv url: http://arxiv.org/abs/2408.12793v1
- Date: Fri, 23 Aug 2024 02:12:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:19:03.052276
- Title: La-SoftMoE CLIP for Unified Physical-Digital Face Attack Detection
- Title(参考訳): La-SoftMoE CLIPによる一元的顔検出
- Authors: Hang Zou, Chenxi Du, Hui Zhang, Yuan Zhang, Ajian Liu, Jun Wan, Zhen Lei,
- Abstract要約: 顔認識システムは、物理的攻撃とデジタル攻撃の両方に影響を受けやすい。
スパースモデルを用いてスパースデータを処理する新しい手法を提案する。
フレキシブルな自己適応型重み付け機構を導入し、モデルに適合し、適応できるようにします。
- 参考スコア(独自算出の注目度): 27.020392407198948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Facial recognition systems are susceptible to both physical and digital attacks, posing significant security risks. Traditional approaches often treat these two attack types separately due to their distinct characteristics. Thus, when being combined attacked, almost all methods could not deal. Some studies attempt to combine the sparse data from both types of attacks into a single dataset and try to find a common feature space, which is often impractical due to the space is difficult to be found or even non-existent. To overcome these challenges, we propose a novel approach that uses the sparse model to handle sparse data, utilizing different parameter groups to process distinct regions of the sparse feature space. Specifically, we employ the Mixture of Experts (MoE) framework in our model, expert parameters are matched to tokens with varying weights during training and adaptively activated during testing. However, the traditional MoE struggles with the complex and irregular classification boundaries of this problem. Thus, we introduce a flexible self-adapting weighting mechanism, enabling the model to better fit and adapt. In this paper, we proposed La-SoftMoE CLIP, which allows for more flexible adaptation to the Unified Attack Detection (UAD) task, significantly enhancing the model's capability to handle diversity attacks. Experiment results demonstrate that our proposed method has SOTA performance.
- Abstract(参考訳): 顔認識システムは、物理的攻撃とデジタル攻撃の両方に影響を受けやすく、重大なセキュリティリスクを生じさせる。
伝統的なアプローチは、2つの攻撃タイプを別々に扱うことが多い。
そのため、組み合わさって攻撃を受けると、ほとんど全ての方法が対処できなかった。
いくつかの研究では、両方の攻撃のスパースデータを単一のデータセットに組み合わせ、共通の特徴空間を見つけようとする。
これらの課題を克服するために、スパースモデルを用いてスパースデータを処理し、異なるパラメータ群を用いてスパース特徴空間の異なる領域を処理する新しいアプローチを提案する。
具体的には、モデルにMixture of Experts(MoE)フレームワークを使用し、トレーニング中にさまざまな重みを持つトークンと専門家パラメータをマッチングし、テスト中に適応的にアクティベートする。
しかし、従来のMoEは、この問題の複雑で不規則な分類境界に悩まされている。
このように、フレキシブルな自己適応重み付け機構を導入し、モデルに適合し、適応できるようにする。
本稿では,統一攻撃検出(UAD)タスクへのより柔軟な適応を可能にするLa-SoftMoE CLIPを提案する。
実験の結果,提案手法はSOTA性能を有することがわかった。
関連論文リスト
- Learning to Learn Transferable Generative Attack for Person Re-Identification [17.26567195924685]
既存の攻撃は、異なるドメインでトレーニングされたモデルを摂動するクロステスト能力を無視して、クロスデータセットとクロスモデル転送可能性のみを考慮する。
実世界のre-idモデルのロバスト性を調べるために,MTGA法を提案する。
我々のMTGAは平均mAP低下率でSOTA法を21.5%、平均11.3%で上回っている。
論文 参考訳(メタデータ) (2024-09-06T11:57:17Z) - Merging Multi-Task Models via Weight-Ensembling Mixture of Experts [64.94129594112557]
異なるタスクでトレーニングされたTransformerベースのモデルを単一の統一モデルにマージすることで、すべてのタスクを同時に実行できる。
従来の手法は、タスク演算によって例示され、効率的かつスケーラブルであることが証明されている。
本稿では,Transformer層をMoEモジュールにアップスケーリングしながら,ほとんどのパラメータをマージすることを提案する。
論文 参考訳(メタデータ) (2024-02-01T08:58:57Z) - Unified Physical-Digital Face Attack Detection [66.14645299430157]
顔認識(FR)システムは物理的(印刷写真)とデジタル(ディープフェイク)攻撃に悩まされることがある。
以前の関連する作業では、両方の状況が同時に考慮されることはめったにありません。
視覚言語モデル(VLM)に基づく一元攻撃検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-31T09:38:44Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) は、入力データを歪ませることで、トレーニングされたニューラルネットワークの堅牢性をテストするために使用される。
本稿では, 自己教師型, 計算的経済的な手法を用いて, 対逆例を生成する手法を提案する。
我々の実験は、この手法が様々なモデル、目に見えないデータカテゴリ、さらには防御されたモデルで有効であることを一貫して実証している。
論文 参考訳(メタデータ) (2023-10-05T17:34:47Z) - Hyperbolic Face Anti-Spoofing [21.981129022417306]
双曲空間におけるよりリッチな階層的および差別的なスプーフィングキューを学習することを提案する。
単調なFAS学習では、特徴埋め込みはポアンカーボールに投影され、双対対対数回帰層は分類のためにカスケードされる。
双曲空間における消失勾配問題を緩和するために,双曲モデルのトレーニング安定性を高めるために,新しい特徴クリッピング法を提案する。
論文 参考訳(メタデータ) (2023-08-17T17:18:21Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Better Robustness by More Coverage: Adversarial Training with Mixup
Augmentation for Robust Fine-tuning [69.65361463168142]
adversarial data augmentation (ada) が広く採用されており、トレーニング中にadversarial例を追加することで、adversarial attackの検索スペースを拡大しようとしている。
我々は,MixADA (Adversarial Data Augmentation with Mixup) と呼ばれる,攻撃検索空間のより広い割合をカバーする,シンプルで効果的な手法を提案する。
BERT と RoBERTa のテキスト分類実験において,MixADA は2つの強敵攻撃による顕著な堅牢性向上を実現し,元のデータに対する ADA の性能を緩和する。
論文 参考訳(メタデータ) (2020-12-31T16:28:07Z) - Learning to Generate Noise for Multi-Attack Robustness [126.23656251512762]
対人学習は、対人摂動に対する既存の方法の感受性を回避できる手法の1つとして登場した。
安全クリティカルなアプリケーションでは、攻撃者は様々な敵を採用してシステムを騙すことができるため、これらの手法は極端に便利である。
本稿では,複数種類の攻撃に対するモデルの堅牢性を改善するために,ノイズ発生を明示的に学習するメタラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-22T10:44:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。