Robust Predictions with Ambiguous Time Delays: A Bootstrap Strategy
- URL: http://arxiv.org/abs/2408.12801v1
- Date: Fri, 23 Aug 2024 02:38:20 GMT
- Title: Robust Predictions with Ambiguous Time Delays: A Bootstrap Strategy
- Authors: Jiajie Wang, Zhiyuan Jerry Lin, Wen Chen,
- Abstract summary: Time Series Model Bootstrap (TSMB) is a versatile framework designed to handle potentially varying or even nondeterministic time delays in time series modeling.
TSMB significantly bolsters the performance of models that are trained and make predictions using this framework, making it highly suitable for a wide range of dynamic and interconnected data environments.
- Score: 5.71557730775514
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contemporary data-driven environments, the generation and processing of multivariate time series data is an omnipresent challenge, often complicated by time delays between different time series. These delays, originating from a multitude of sources like varying data transmission dynamics, sensor interferences, and environmental changes, introduce significant complexities. Traditional Time Delay Estimation methods, which typically assume a fixed constant time delay, may not fully capture these variabilities, compromising the precision of predictive models in diverse settings. To address this issue, we introduce the Time Series Model Bootstrap (TSMB), a versatile framework designed to handle potentially varying or even nondeterministic time delays in time series modeling. Contrary to traditional approaches that hinge on the assumption of a single, consistent time delay, TSMB adopts a nonparametric stance, acknowledging and incorporating time delay uncertainties. TSMB significantly bolsters the performance of models that are trained and make predictions using this framework, making it highly suitable for a wide range of dynamic and interconnected data environments.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - TiVaT: Joint-Axis Attention for Time Series Forecasting with Lead-Lag Dynamics [5.016178141636157]
TiVaT (Time-Variable Transformer) is a novel architecture that integrates temporal and variable dependencies.
TiVaT consistently delivers strong performance across diverse datasets.
This positions TiVaT as a new benchmark in MTS forecasting, particularly in handling datasets characterized by intricate and challenging dependencies.
arXiv Detail & Related papers (2024-10-02T13:24:24Z) - TimeDiT: General-purpose Diffusion Transformers for Time Series Foundation Model [11.281386703572842]
A family of models have been developed, utilizing a temporal auto-regressive generative Transformer architecture.
TimeDiT is a general foundation model for time series that employs a denoising diffusion paradigm instead of temporal auto-regressive generation.
Extensive experiments conducted on a varity of tasks such as forecasting, imputation, and anomaly detection, demonstrate the effectiveness of TimeDiT.
arXiv Detail & Related papers (2024-09-03T22:31:57Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Unified Training of Universal Time Series Forecasting Transformers [104.56318980466742]
We present a Masked-based Universal Time Series Forecasting Transformer (Moirai)
Moirai is trained on our newly introduced Large-scale Open Time Series Archive (LOTSA) featuring over 27B observations across nine domains.
Moirai achieves competitive or superior performance as a zero-shot forecaster when compared to full-shot models.
arXiv Detail & Related papers (2024-02-04T20:00:45Z) - Discovering Predictable Latent Factors for Time Series Forecasting [39.08011991308137]
We develop a novel framework for inferring the intrinsic latent factors implied by the observable time series.
We introduce three characteristics, i.e., predictability, sufficiency, and identifiability, and model these characteristics via the powerful deep latent dynamics models.
Empirical results on multiple real datasets show the efficiency of our method for different kinds of time series forecasting.
arXiv Detail & Related papers (2023-03-18T14:37:37Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Multivariate Probabilistic Time Series Forecasting via Conditioned
Normalizing Flows [8.859284959951204]
Time series forecasting is fundamental to scientific and engineering problems.
Deep learning methods are well suited for this problem.
We show that it improves over the state-of-the-art for standard metrics on many real-world data sets.
arXiv Detail & Related papers (2020-02-14T16:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.