論文の概要: A Safe Self-evolution Algorithm for Autonomous Driving Based on Data-Driven Risk Quantification Model
- arxiv url: http://arxiv.org/abs/2408.12805v1
- Date: Fri, 23 Aug 2024 02:52:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:09:18.601174
- Title: A Safe Self-evolution Algorithm for Autonomous Driving Based on Data-Driven Risk Quantification Model
- Title(参考訳): データ駆動型リスク定量化モデルに基づく自動運転のための安全自己進化アルゴリズム
- Authors: Shuo Yang, Shizhen Li, Yanjun Huang, Hong Chen,
- Abstract要約: 本稿では,データ駆動型リスク定量化モデルに基づく自動運転のための安全な自己進化アルゴリズムを提案する。
アルゴリズムの自己進化能力に対する過保守的安全保護ポリシーの影響を回避するため, 安全限度を調整可能な安全限度付き安全進化型決定制御統合アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 14.398857940603495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving systems with self-evolution capabilities have the potential to independently evolve in complex and open environments, allowing to handle more unknown scenarios. However, as a result of the safety-performance trade-off mechanism of evolutionary algorithms, it is difficult to ensure safe exploration without sacrificing the improvement ability. This problem is especially prominent in dynamic traffic scenarios. Therefore, this paper proposes a safe self-evolution algorithm for autonomous driving based on data-driven risk quantification model. Specifically, a risk quantification model based on the attention mechanism is proposed by modeling the way humans perceive risks during driving, with the idea of achieving safety situation estimation of the surrounding environment through a data-driven approach. To prevent the impact of over-conservative safety guarding policies on the self-evolution capability of the algorithm, a safety-evolutionary decision-control integration algorithm with adjustable safety limits is proposed, and the proposed risk quantization model is integrated into it. Simulation and real-vehicle experiments results illustrate the effectiveness of the proposed method. The results show that the proposed algorithm can generate safe and reasonable actions in a variety of complex scenarios and guarantee safety without losing the evolutionary potential of learning-based autonomous driving systems.
- Abstract(参考訳): 自己進化能力を持つ自律運転システムは、複雑でオープンな環境で独立して進化する可能性があり、より未知のシナリオを扱うことができる。
しかし、進化的アルゴリズムの安全性と性能のトレードオフ機構により、改良能力を犠牲にすることなく安全な探索を確保することは困難である。
この問題は、特に動的なトラフィックシナリオにおいて顕著である。
そこで本研究では,データ駆動型リスク定量化モデルに基づく自動運転のための安全な自己進化アルゴリズムを提案する。
具体的には、運転中のリスクを人間が認識する方法をモデル化し、データ駆動型アプローチにより周囲環境の安全状況を推定するリスク定量化モデルを提案する。
アルゴリズムの自己進化能力に対する過保守的安全保護ポリシーの影響を防止するため, 安全限度を調整可能な安全度付き安全進化型決定制御統合アルゴリズムを提案し, 提案したリスク量子化モデルを統合する。
シミュレーションと実車実験の結果は,提案手法の有効性を示すものである。
提案アルゴリズムは,学習に基づく自律運転システムの進化可能性を失うことなく,様々な複雑なシナリオにおいて安全かつ合理的な動作を生成できることを示す。
関連論文リスト
- A Safe and Efficient Self-evolving Algorithm for Decision-making and Control of Autonomous Driving Systems [19.99282698119699]
自己進化型自動運転車は、現実世界の環境における未知のシナリオに対処することが期待されている。
強化学習は 最適な政策を学ぶことで 自己進化できる。
本稿では,ハイブリッドなメカニズム-経験-学習型拡張手法を提案する。
論文 参考訳(メタデータ) (2024-08-22T08:05:03Z) - Enhanced Safety in Autonomous Driving: Integrating Latent State Diffusion Model for End-to-End Navigation [5.928213664340974]
本研究は自動運転の制御最適化問題における安全性問題に対処する。
本稿では,条件付きバリュー・アット・リスクに基づくソフトアクター批判を利用して,ポリシー最適化のための新しいモデルベースアプローチを提案する。
本手法では, 安全探索を誘導する最悪のアクターを導入し, 予測不可能なシナリオにおいても, 安全要件の厳密な遵守を確保する。
論文 参考訳(メタデータ) (2024-07-08T18:32:40Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Model Predictive Control with Gaussian-Process-Supported Dynamical
Constraints for Autonomous Vehicles [82.65261980827594]
本研究では、学習したガウス過程を利用して人間の運転行動を予測する自動運転車のモデル予測制御手法を提案する。
マルチモード予測制御アプローチは、人間のドライバーの意図を考察する。
論文 参考訳(メタデータ) (2023-03-08T17:14:57Z) - SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for
Autonomous Driving [16.78084912175149]
本稿では,SOTIFリスクを最小化するための体系的アプローチとして,自己監視・自己適応システムを提案する。
このシステムのコアは、自動運転車内で実装された人工知能アルゴリズムのリスクモニタリングである。
固有認識アルゴリズムのリスクと外部衝突のリスクは、SOTIFエントロピーを介して共同で定量化される。
論文 参考訳(メタデータ) (2022-11-08T05:02:12Z) - Adaptive Risk Tendency: Nano Drone Navigation in Cluttered Environments
with Distributional Reinforcement Learning [17.940958199767234]
適応型リスク傾向ポリシーを学習するための分散強化学習フレームワークを提案する。
本アルゴリズムは,シミュレーションと実世界の実験の両方において,ハエのリスク感度を調整可能であることを示す。
論文 参考訳(メタデータ) (2022-03-28T13:39:58Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Addressing Inherent Uncertainty: Risk-Sensitive Behavior Generation for
Automated Driving using Distributional Reinforcement Learning [0.0]
自動運転車におけるリスク感応行動生成のための2段階のアプローチを提案する。
まず, 深層分布強化学習を用いて, 不確実な環境下で最適政策を学習する。
実行中は、確立されたリスク基準を適用して最適なリスク感受性行動を選択する。
論文 参考訳(メタデータ) (2021-02-05T11:45:12Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。