論文の概要: SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for
Autonomous Driving
- arxiv url: http://arxiv.org/abs/2211.04009v1
- Date: Tue, 8 Nov 2022 05:02:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 16:19:00.573229
- Title: SOTIF Entropy: Online SOTIF Risk Quantification and Mitigation for
Autonomous Driving
- Title(参考訳): SOTIFエントロピー:オンラインSOTIFのリスク定量化と自律運転の軽減
- Authors: Liang Peng, Boqi Li, Wenhao Yu, Kai Yang, Wenbo Shao, and Hong Wang
- Abstract要約: 本稿では,SOTIFリスクを最小化するための体系的アプローチとして,自己監視・自己適応システムを提案する。
このシステムのコアは、自動運転車内で実装された人工知能アルゴリズムのリスクモニタリングである。
固有認識アルゴリズムのリスクと外部衝突のリスクは、SOTIFエントロピーを介して共同で定量化される。
- 参考スコア(独自算出の注目度): 16.78084912175149
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Autonomous driving confronts great challenges in complex traffic scenarios,
where the risk of Safety of the Intended Functionality (SOTIF) can be triggered
by the dynamic operational environment and system insufficiencies. The SOTIF
risk is reflected not only intuitively in the collision risk with objects
outside the autonomous vehicles (AVs), but also inherently in the performance
limitation risk of the implemented algorithms themselves. How to minimize the
SOTIF risk for autonomous driving is currently a critical, difficult, and
unresolved issue. Therefore, this paper proposes the "Self-Surveillance and
Self-Adaption System" as a systematic approach to online minimize the SOTIF
risk, which aims to provide a systematic solution for monitoring,
quantification, and mitigation of inherent and external risks. The core of this
system is the risk monitoring of the implemented artificial intelligence
algorithms within the AV. As a demonstration of the Self-Surveillance and
Self-Adaption System, the risk monitoring of the perception algorithm, i.e.,
YOLOv5 is highlighted. Moreover, the inherent perception algorithm risk and
external collision risk are jointly quantified via SOTIF entropy, which is then
propagated downstream to the decision-making module and mitigated. Finally,
several challenging scenarios are demonstrated, and the Hardware-in-the-Loop
experiments are conducted to verify the efficiency and effectiveness of the
system. The results demonstrate that the Self-Surveillance and Self-Adaption
System enables dependable online monitoring, quantification, and mitigation of
SOTIF risk in real-time critical traffic environments.
- Abstract(参考訳): 自律運転は複雑な交通シナリオにおいて大きな課題に直面しており、SOTIF(Intended Functionality)の安全性のリスクは、動的運用環境とシステム障害によって引き起こされる。
sotifリスクは、自動運転車(avs)外の物体との衝突リスクに直観的に反映されるだけでなく、実装されたアルゴリズム自体の性能制限リスクにも反映される。
自動運転におけるSOTIFのリスクを最小限にする方法は、現在、重要で困難で未解決の課題である。
そこで本稿では,本邦及び外部リスクの監視,定量化,緩和のための体系的ソリューションを提供することを目的として,sofifリスクをオンラインに最小化するための体系的アプローチとして「自己サーベイランスと自己適応システム」を提案する。
このシステムの中核は、AV内に実装された人工知能アルゴリズムのリスクモニタリングである。
自己監視・自己適応システムの実証として、認識アルゴリズムのリスク監視、すなわち、YOLOv5が強調される。
さらに、固有の認識アルゴリズムリスクと外部衝突リスクは、SOTIFエントロピーを介して共同で定量化され、意思決定モジュールに下流に伝播され、緩和される。
最後に,いくつかの難解なシナリオを実証し,ハードウェア・イン・ザ・ループ実験を行い,システムの効率と有効性を検証する。
その結果,自己監視・自己適応システムは,リアルタイム交通環境におけるSOTIFリスクの信頼性の高いモニタリング,定量化,緩和を可能にすることを示した。
関連論文リスト
- From Silos to Systems: Process-Oriented Hazard Analysis for AI Systems [2.226040060318401]
システム理論プロセス分析(STPA)をAIの操作と開発プロセスの解析に応用する。
我々は、機械学習アルゴリズムに依存したシステムと、3つのケーススタディに焦点をあてる。
私たちは、AIシステムに適したいくつかの適応があるにもかかわらず、anAを実行するための重要な概念とステップが容易に適用できることに気付きました。
論文 参考訳(メタデータ) (2024-10-29T20:43:18Z) - A Safe Self-evolution Algorithm for Autonomous Driving Based on Data-Driven Risk Quantification Model [14.398857940603495]
本稿では,データ駆動型リスク定量化モデルに基づく自動運転のための安全な自己進化アルゴリズムを提案する。
アルゴリズムの自己進化能力に対する過保守的安全保護ポリシーの影響を回避するため, 安全限度を調整可能な安全限度付き安全進化型決定制御統合アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-23T02:52:35Z) - EAIRiskBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [47.69642609574771]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
EAIRiskBenchは、EAIシナリオにおける自動物理的リスクアセスメントのための新しいフレームワークである。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - STEAM & MoSAFE: SOTIF Error-and-Failure Model & Analysis for AI-Enabled
Driving Automation [4.820785104084241]
本稿では、SOTIF因果モデルの改良として、STEAM(SotIF Temporal Error and Failure Model)を定義した。
第2に,システム設計モデルに基づくSTEAMのインスタンス化が可能なモデルベースSOTIF解析法(MoSAFE)を提案する。
論文 参考訳(メタデータ) (2023-12-15T06:34:35Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - RCP-RF: A Comprehensive Road-car-pedestrian Risk Management Framework
based on Driving Risk Potential Field [1.625213292350038]
本研究では,コネクテッド・アンド・オートマチック・ビークル(CAV)環境下での電位場理論に基づく総合運転リスク管理フレームワークRCP-RFを提案する。
既存のアルゴリズムと異なり,エゴ車と障害物車と歩行者係数の移動傾向は,提案手法において正当に考慮されている。
実世界のデータセットNGSIMおよび実AVプラットフォーム上での最先端手法に対する提案手法の優位性を検証する実証的研究を行った。
論文 参考訳(メタデータ) (2023-05-04T01:54:37Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Risk-Driven Design of Perception Systems [47.787943101699966]
システム全体の安全性を低下させるエラーを最小限に抑えるために,認識システムを設計することが重要である。
完全積分閉ループシステムの性能に及ぼす知覚誤差の影響を考慮に入れた認識システム設計のためのリスク駆動型アプローチを開発する。
本研究では,現実的な視界に基づく航空機による応用・回避技術の評価を行い,リスク駆動設計がベースラインシステム上での衝突リスクを37%低減することを示す。
論文 参考訳(メタデータ) (2022-05-21T21:14:56Z) - The Risks of Machine Learning Systems [11.105884571838818]
システム全体のリスクは、その直接的および間接的な影響に影響される。
MLのリスク/インパクト評価のための既存のフレームワークは、しばしばリスクの抽象的な概念に対処する。
1次リスクはMLシステムの側面に起因するが、2次リスクは1次リスクの結果に起因する。
論文 参考訳(メタデータ) (2022-04-21T02:42:10Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。