Free Energy Risk Metrics for Systemically Safe AI: Gatekeeping Multi-Agent Study
- URL: http://arxiv.org/abs/2502.04249v1
- Date: Thu, 06 Feb 2025 17:38:45 GMT
- Title: Free Energy Risk Metrics for Systemically Safe AI: Gatekeeping Multi-Agent Study
- Authors: Michael Walters, Rafael Kaufmann, Justice Sefas, Thomas Kopinski,
- Abstract summary: We investigate the Free Energy Principle as a foundation for measuring risk in agentic and multi-agent systems.
We introduce a Cumulative Risk Exposure metric that is flexible to differing contexts and needs.
We show that the introduction of gatekeepers in an AV fleet, even at low penetration, can generate significant positive externalities in terms of increased system safety.
- Score: 0.4166512373146748
- License:
- Abstract: We investigate the Free Energy Principle as a foundation for measuring risk in agentic and multi-agent systems. From these principles we introduce a Cumulative Risk Exposure metric that is flexible to differing contexts and needs. We contrast this to other popular theories for safe AI that hinge on massive amounts of data or describing arbitrarily complex world models. In our framework, stakeholders need only specify their preferences over system outcomes, providing straightforward and transparent decision rules for risk governance and mitigation. This framework naturally accounts for uncertainty in both world model and preference model, allowing for decision-making that is epistemically and axiologically humble, parsimonious, and future-proof. We demonstrate this novel approach in a simplified autonomous vehicle environment with multi-agent vehicles whose driving policies are mediated by gatekeepers that evaluate, in an online fashion, the risk to the collective safety in their neighborhood, and intervene through each vehicle's policy when appropriate. We show that the introduction of gatekeepers in an AV fleet, even at low penetration, can generate significant positive externalities in terms of increased system safety.
Related papers
- SafeDrive: Knowledge- and Data-Driven Risk-Sensitive Decision-Making for Autonomous Vehicles with Large Language Models [14.790308656087316]
SafeDrive is a knowledge- and data-driven risk-sensitive decision-making framework to enhance autonomous driving safety and adaptability.
By integrating knowledge-driven insights with adaptive learning mechanisms, the framework ensures robust decision-making under uncertain conditions.
arXiv Detail & Related papers (2024-12-17T16:45:27Z) - A Safe Self-evolution Algorithm for Autonomous Driving Based on Data-Driven Risk Quantification Model [14.398857940603495]
This paper proposes a safe self-evolution algorithm for autonomous driving based on data-driven risk quantification model.
To prevent the impact of over-conservative safety guarding policies on the self-evolution capability of the algorithm, a safety-evolutionary decision-control integration algorithm with adjustable safety limits is proposed.
arXiv Detail & Related papers (2024-08-23T02:52:35Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Safe Inputs but Unsafe Output: Benchmarking Cross-modality Safety Alignment of Large Vision-Language Model [73.8765529028288]
We introduce a novel safety alignment challenge called Safe Inputs but Unsafe Output (SIUO) to evaluate cross-modality safety alignment.
To empirically investigate this problem, we developed the SIUO, a cross-modality benchmark encompassing 9 critical safety domains, such as self-harm, illegal activities, and privacy violations.
Our findings reveal substantial safety vulnerabilities in both closed- and open-source LVLMs, underscoring the inadequacy of current models to reliably interpret and respond to complex, real-world scenarios.
arXiv Detail & Related papers (2024-06-21T16:14:15Z) - RiskQ: Risk-sensitive Multi-Agent Reinforcement Learning Value Factorization [49.26510528455664]
We introduce the Risk-sensitive Individual-Global-Max (RIGM) principle as a generalization of the Individual-Global-Max (IGM) and Distributional IGM (DIGM) principles.
We show that RiskQ can obtain promising performance through extensive experiments.
arXiv Detail & Related papers (2023-11-03T07:18:36Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Safe Model-Based Multi-Agent Mean-Field Reinforcement Learning [48.667697255912614]
Mean-field reinforcement learning addresses the policy of a representative agent interacting with the infinite population of identical agents.
We propose Safe-M$3$-UCRL, the first model-based mean-field reinforcement learning algorithm that attains safe policies even in the case of unknown transitions.
Our algorithm effectively meets the demand in critical areas while ensuring service accessibility in regions with low demand.
arXiv Detail & Related papers (2023-06-29T15:57:07Z) - Risk-aware Safe Control for Decentralized Multi-agent Systems via
Dynamic Responsibility Allocation [36.52509571098292]
We present a risk-aware decentralized control framework that provides guidance on how much responsibility share an individual agent should take to avoid collisions with others.
We propose a novel Control Barrier Function (CBF)-inspired risk measurement to characterize the aggregate risk agents face from potential collisions under motion uncertainty.
We are able to leverage the flexibility of robots with lower risk to improve the motion flexibility for those with higher risk, thus achieving improved collective safety.
arXiv Detail & Related papers (2023-05-22T20:21:49Z) - Sample-Based Bounds for Coherent Risk Measures: Applications to Policy
Synthesis and Verification [32.9142708692264]
This paper aims to address a few problems regarding risk-aware verification and policy synthesis.
First, we develop a sample-based method to evaluate a subset of a random variable distribution.
Second, we develop a robotic-based method to determine solutions to problems that outperform a large fraction of the decision space.
arXiv Detail & Related papers (2022-04-21T01:06:10Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.