論文の概要: DutyTTE: Deciphering Uncertainty in Origin-Destination Travel Time Estimation
- arxiv url: http://arxiv.org/abs/2408.12809v2
- Date: Mon, 20 Jan 2025 08:12:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:16:56.451882
- Title: DutyTTE: Deciphering Uncertainty in Origin-Destination Travel Time Estimation
- Title(参考訳): DutyTTE: 原位置走行時間推定における不確かさの解読
- Authors: Xiaowei Mao, Yan Lin, Shengnan Guo, Yubin Chen, Xingyu Xian, Haomin Wen, Qisen Xu, Youfang Lin, Huaiyu Wan,
- Abstract要約: 旅行時間推定(TTE)の不確実性定量化は、旅行時間の信頼区間を推定することを目的としている。
提案するDutyTTEは,(1)真実に整合した経路の予測,2)各セグメントにおける旅行時間の影響のモデル化,という2つの課題に対処する。
- 参考スコア(独自算出の注目度): 20.105582223771627
- License:
- Abstract: Uncertainty quantification in travel time estimation (TTE) aims to estimate the confidence interval for travel time, given the origin (O), destination (D), and departure time (T). Accurately quantifying this uncertainty requires generating the most likely path and assessing travel time uncertainty along the path. This involves two main challenges: 1) Predicting a path that aligns with the ground truth, and 2) modeling the impact of travel time in each segment on overall uncertainty under varying conditions. We propose DutyTTE to address these challenges. For the first challenge, we introduce a deep reinforcement learning method to improve alignment between the predicted path and the ground truth, providing more accurate travel time information from road segments to improve TTE. For the second challenge, we propose a mixture of experts guided uncertainty quantification mechanism to better capture travel time uncertainty for each segment under varying contexts. Additionally, we calibrate our results using Hoeffding's upper-confidence bound to provide statistical guarantees for the estimated confidence intervals. Extensive experiments on two real-world datasets demonstrate the superiority of our proposed method.
- Abstract(参考訳): 旅行時間推定(TTE)の不確実性定量化は、出発点(O)、目的地(D)、出発点(T)の信頼区間を推定することを目的としている。
この不確実性を正確に定量化するには、最も可能性の高い経路を生成し、経路に沿った旅行時間の不確実性を評価する必要がある。
これには2つの大きな課題があります。
1)真実と整合した経路の予測,及び
2) 各区間における走行時間の影響をモデル化し, 異なる条件下での総合的不確実性について検討した。
これらの課題に対処するためにDutyTTEを提案する。
最初の課題として、予測経路と地上真実との整合性を改善するための深層強化学習法を導入し、道路セグメントからより正確な走行時間情報を提供し、TTEを改善する。
第2の課題として,各セグメントの走行時間不確実性をよりよく把握するための不確実性定量化機構を,様々な状況下で指導する専門家の混在を提案する。
さらに,推定信頼区間の統計的保証を提供するために,Hoeffdingの上限値を用いて評価結果を校正する。
2つの実世界のデータセットに対する大規模な実験により,提案手法の優位性を実証した。
関連論文リスト
- Building Real-time Awareness of Out-of-distribution in Trajectory Prediction for Autonomous Vehicles [8.398221841050349]
軌道予測は、自動運転車の周囲の障害物の動きを記述する。
本稿では,自律走行車における軌道予測におけるアウト・オブ・ディストリビューションのリアルタイム認識を確立することを目的とする。
提案手法は軽量であり, 軌道予測推定時にいつでもアウト・オブ・ディストリビューションの発生を処理できる。
論文 参考訳(メタデータ) (2024-09-25T18:43:58Z) - SMURF-THP: Score Matching-based UnceRtainty quantiFication for
Transformer Hawkes Process [76.98721879039559]
SMURF-THPは,変圧器ホークス過程を学習し,予測の不確かさを定量化するスコアベース手法である。
具体的には、SMURF-THPは、スコアマッチング目標に基づいて、イベントの到着時刻のスコア関数を学習する。
我々は,イベントタイプ予測と到着時刻の不確実性定量化の両方において,広範な実験を行う。
論文 参考訳(メタデータ) (2023-10-25T03:33:45Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
不確実量化(UQ)法は確率論的推論を誘導するためのアプローチを提供する。
複数の都市にまたがる大規模画像ベース交通データセットへの適用について検討する。
モスクワ市を事例として,交通行動に対する時間的・空間的影響を考察した。
論文 参考訳(メタデータ) (2023-08-11T13:35:52Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
分散シフトへの対処は、現代の機械学習における中心的な課題の1つだ。
歴史的情報を適切に再利用するオンライン手法を提案する。
我々の密度比推定法は, ダイナミックなリセットバウンドを楽しむことにより, 良好に動作できることが証明された。
論文 参考訳(メタデータ) (2023-02-06T04:03:33Z) - Uncertainty Quantification for Traffic Forecasting: A Unified Approach [21.556559649467328]
不確実性は時系列予測タスクに不可欠な考慮事項である。
本研究では,交通予測の不確かさの定量化に焦点をあてる。
STUQ(Deep S-Temporal Uncertainity Quantification)を開発した。
論文 参考訳(メタデータ) (2022-08-11T15:21:53Z) - Route to Time and Time to Route: Travel Time Estimation from Sparse
Trajectories [7.602975042011819]
本稿では,スパースシナリオにおける旅行時間推定(TTE)と経路回復の問題を解決することを目的とする。
我々は、この問題を、トレーニングデータが粗いラベルを持つ不正確な監督問題として定式化する。
本稿では,推定経路の走行時間をEステップの弱い監督によって推定し,Mステップの走行時間に基づいて経路を抽出するEMアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-21T14:16:58Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Short-term bus travel time prediction for transfer synchronization with
intelligent uncertainty handling [12.504473943407092]
マルチリンクバスの走行時間問題に適応・拡張した不確実性推定のための2つの新しいアプローチを提案する。
不確実性は、反復的な人工ニューラルネットワークの一部として直接モデル化されるが、2つの根本的に異なるアプローチを用いる。
論文 参考訳(メタデータ) (2021-04-14T12:38:27Z) - Temporal Difference Uncertainties as a Signal for Exploration [76.6341354269013]
強化学習における探索の効果的なアプローチは、最適な政策に対するエージェントの不確実性に依存することである。
本稿では,評価値のバイアスや時間的に矛盾する点を強調した。
本稿では,時間差誤差の分布の導出に依存する値関数の不確かさを推定する手法を提案する。
論文 参考訳(メタデータ) (2020-10-05T18:11:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。