論文の概要: Data-Driven Parametrization of Molecular Mechanics Force Fields for Expansive Chemical Space Coverage
- arxiv url: http://arxiv.org/abs/2408.12817v1
- Date: Fri, 23 Aug 2024 03:37:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:09:18.573269
- Title: Data-Driven Parametrization of Molecular Mechanics Force Fields for Expansive Chemical Space Coverage
- Title(参考訳): 拡張化学空間被覆のための分子力学力場のデータ駆動パラメトリゼーション
- Authors: Tianze Zheng, Ailun Wang, Xu Han, Yu Xia, Xingyuan Xu, Jiawei Zhan, Yu Liu, Yang Chen, Zhi Wang, Xiaojie Wu, Sheng Gong, Wen Yan,
- Abstract要約: 我々は、薬物様分子のアンバー互換力場であるByteFFを開発した。
本モデルでは, 薬物様分子のすべての結合および非結合MM力場パラメータを, 広い化学空間にわたって同時に予測する。
- 参考スコア(独自算出の注目度): 16.745564099126575
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A force field is a critical component in molecular dynamics simulations for computational drug discovery. It must achieve high accuracy within the constraints of molecular mechanics' (MM) limited functional forms, which offers high computational efficiency. With the rapid expansion of synthetically accessible chemical space, traditional look-up table approaches face significant challenges. In this study, we address this issue using a modern data-driven approach, developing ByteFF, an Amber-compatible force field for drug-like molecules. To create ByteFF, we generated an expansive and highly diverse molecular dataset at the B3LYP-D3(BJ)/DZVP level of theory. This dataset includes 2.4 million optimized molecular fragment geometries with analytical Hessian matrices, along with 3.2 million torsion profiles. We then trained an edge-augmented, symmetry-preserving molecular graph neural network (GNN) on this dataset, employing a carefully optimized training strategy. Our model predicts all bonded and non-bonded MM force field parameters for drug-like molecules simultaneously across a broad chemical space. ByteFF demonstrates state-of-the-art performance on various benchmark datasets, excelling in predicting relaxed geometries, torsional energy profiles, and conformational energies and forces. Its exceptional accuracy and expansive chemical space coverage make ByteFF a valuable tool for multiple stages of computational drug discovery.
- Abstract(参考訳): 力場は、計算薬物発見のための分子動力学シミュレーションにおいて重要な要素である。
分子力学(MM)の制限された機能形式の制約の中で高い精度を達成し、高い計算効率を実現する必要がある。
合成可能な化学空間の急速な拡張により、伝統的なルックアップテーブルアプローチは重大な課題に直面している。
本研究では, 薬物様分子に対するアンバー互換力場であるByteFFを開発するために, 最新のデータ駆動手法を用いてこの問題に対処する。
ByteFFを作成するために,B3LYP-D3(BJ)/DZVP理論において,拡張性と高度に多様な分子データセットを生成した。
このデータセットには、240万の最適化された分子フラグメントジオメトリと解析的なヘッセン行列、および3200万のトーションプロファイルが含まれている。
次に、このデータセットに基づいて、エッジ強化された対称性保持分子グラフニューラルネットワーク(GNN)をトレーニングし、慎重に最適化されたトレーニング戦略を採用した。
本モデルでは, 薬物様分子のすべての結合および非結合MM力場パラメータを, 広い化学空間にわたって同時に予測する。
ByteFFは、様々なベンチマークデータセットで最先端のパフォーマンスを示し、緩和されたジオメトリ、ねじれエネルギープロファイル、コンフォメーションエネルギーと力の予測に優れています。
その例外的な精度と化学空間の広がりにより、ByteFFは、計算薬物発見の複数の段階において貴重なツールとなる。
関連論文リスト
- SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive
Molecular Property Prediction [1.534667887016089]
多パラメータ持続ホモロジー(MPPH)を用いた新しい分子指紋生成法を提案する。
この技術は、正確な分子特性予測が不可欠である薬物発見と材料科学において、かなりの重要性を持っている。
分子特性の予測における既存の最先端手法よりも優れた性能を示し,MoleculeNetベンチマークで広範囲な評価を行った。
論文 参考訳(メタデータ) (2023-12-12T09:33:54Z) - Machine-learned molecular mechanics force field for the simulation of
protein-ligand systems and beyond [33.54862439531144]
生体分子シミュレーションとコンピュータ支援薬物設計には, 信頼性および分子力学(MM)力場の開発が不可欠である。
本稿では、一般化された機械学習型MM力場、ttexttespaloma-0.3、およびグラフニューラルネットワークを用いたエンドツーエンドの微分可能なフレームワークを紹介する。
力場は、小さな分子、ペプチド、核酸を含む薬物発見に非常に関係した化学ドメインの量子化学エネルギー特性を再現する。
論文 参考訳(メタデータ) (2023-07-13T23:00:22Z) - Geometry-Complete Diffusion for 3D Molecule Generation and Optimization [3.8366697175402225]
3次元分子生成のための幾何-完全拡散モデル(GCDM)を導入する。
GCDMは、既存の3次元分子拡散モデルよりも条件および非条件設定間で大きなマージンで優れている。
また、GCDMの幾何学的特徴は、既存の3次元分子の幾何学的および化学組成を一貫して最適化するために再利用可能であることも示している。
論文 参考訳(メタデータ) (2023-02-08T20:01:51Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
本稿では,ノード(原子)とエッジ(結合と非結合の原子対)を入力とし,それらの相互作用をモデル化するトランスフォーマーアーキテクチャを提案する。
MoleformerはOC20の緩和エネルギー予測の初期状態の最先端を実現し、QM9では量子化学特性の予測に非常に競争力がある。
論文 参考訳(メタデータ) (2023-02-02T03:49:57Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Augmenting Molecular Deep Generative Models with Topological Data
Analysis Representations [21.237758981760784]
分子のトポロジカルデータ解析(TDA)表現を付加したSMILES変分自動エンコーダ(VAE)を提案する。
実験の結果, このTDA拡張により, SMILES VAEは3次元幾何学と電子特性の複雑な関係を捉えることができることがわかった。
論文 参考訳(メタデータ) (2021-06-08T15:49:21Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - End-to-End Differentiable Molecular Mechanics Force Field Construction [0.5269923665485903]
化学環境を知覚するためにグラフニューラルネットワークを用いる別のアプローチを提案する。
プロセス全体がモジュール化されており、モデルパラメータに関してエンドツーエンドの差別化が可能である。
本手法は, 従来の原子型を再現するだけでなく, 既存の分子力学力場を正確に再現し, 拡張することができることを示す。
論文 参考訳(メタデータ) (2020-10-02T20:59:46Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。