論文の概要: $\nabla^2$DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials
- arxiv url: http://arxiv.org/abs/2406.14347v2
- Date: Fri, 13 Dec 2024 09:32:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:00:52.095778
- Title: $\nabla^2$DFT: A Universal Quantum Chemistry Dataset of Drug-Like Molecules and a Benchmark for Neural Network Potentials
- Title(参考訳): $\nabla^2$DFT: 薬物のような分子の普遍的な量子化学データセットとニューラルネットワークポテンシャルのベンチマーク
- Authors: Kuzma Khrabrov, Anton Ber, Artem Tsypin, Konstantin Ushenin, Egor Rumiantsev, Alexander Telepov, Dmitry Protasov, Ilya Shenbin, Anton Alekseev, Mikhail Shirokikh, Sergey Nikolenko, Elena Tutubalina, Artur Kadurin,
- Abstract要約: この研究は、nablaDFTをベースにした$nabla2$DFTと呼ばれる新しいデータセットとベンチマークを提示している。
分子構造の2倍、コンフォーメーションの3倍、新しいデータタイプとタスク、最先端のモデルを含んでいる。
$nabla2$DFTは、大量の薬物様分子の緩和軌道を含む最初のデータセットである。
- 参考スコア(独自算出の注目度): 35.949502493236146
- License:
- Abstract: Methods of computational quantum chemistry provide accurate approximations of molecular properties crucial for computer-aided drug discovery and other areas of chemical science. However, high computational complexity limits the scalability of their applications. Neural network potentials (NNPs) are a promising alternative to quantum chemistry methods, but they require large and diverse datasets for training. This work presents a new dataset and benchmark called $\nabla^2$DFT that is based on the nablaDFT. It contains twice as much molecular structures, three times more conformations, new data types and tasks, and state-of-the-art models. The dataset includes energies, forces, 17 molecular properties, Hamiltonian and overlap matrices, and a wavefunction object. All calculations were performed at the DFT level ($\omega$B97X-D/def2-SVP) for each conformation. Moreover, $\nabla^2$DFT is the first dataset that contains relaxation trajectories for a substantial number of drug-like molecules. We also introduce a novel benchmark for evaluating NNPs in molecular property prediction, Hamiltonian prediction, and conformational optimization tasks. Finally, we propose an extendable framework for training NNPs and implement 10 models within it.
- Abstract(参考訳): 計算量子化学の手法は、コンピュータ支援薬物発見やその他の化学分野において重要な分子特性の正確な近似を提供する。
しかし、高い計算複雑性はアプリケーションのスケーラビリティを制限します。
ニューラルネットワークポテンシャル(NNP)は量子化学法に代わる有望な代替手段であるが、トレーニングには大規模で多様なデータセットが必要である。
この研究は、nablaDFTをベースにした$\nabla^2$DFTと呼ばれる新しいデータセットとベンチマークを提示している。
分子構造の2倍、コンフォーメーションの3倍、新しいデータタイプとタスク、最先端のモデルを含んでいる。
このデータセットには、エネルギー、力、17の分子特性、ハミルトン行列と重なり合う行列、および波動関数オブジェクトが含まれる。
全ての計算はコンフォメーションごとにDFTレベル(\omega$B97X-D/def2-SVP)で実行された。
さらに、$\nabla^2$DFTは、かなりの数の薬物様分子に対する緩和軌道を含む最初のデータセットである。
また,分子特性予測,ハミルトン予測,コンフォメーション最適化タスクにおいて,NNPを評価するための新しいベンチマークを導入する。
最後に,NNPをトレーニングし,その内部に10のモデルを実装する拡張可能なフレームワークを提案する。
関連論文リスト
- Data-Driven Parametrization of Molecular Mechanics Force Fields for Expansive Chemical Space Coverage [16.745564099126575]
我々は、薬物様分子のアンバー互換力場であるByteFFを開発した。
本モデルでは, 薬物様分子のすべての結合および非結合MM力場パラメータを, 広い化学空間にわたって同時に予測する。
論文 参考訳(メタデータ) (2024-08-23T03:37:06Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
QH9と呼ばれる新しい量子ハミルトンデータセットを生成し、999または2998の分子動力学軌道に対して正確なハミルトン行列を提供する。
現在の機械学習モデルでは、任意の分子に対するハミルトン行列を予測する能力がある。
論文 参考訳(メタデータ) (2023-06-15T23:39:07Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
本稿では,ノード(原子)とエッジ(結合と非結合の原子対)を入力とし,それらの相互作用をモデル化するトランスフォーマーアーキテクチャを提案する。
MoleformerはOC20の緩和エネルギー予測の初期状態の最先端を実現し、QM9では量子化学特性の予測に非常に競争力がある。
論文 参考訳(メタデータ) (2023-02-02T03:49:57Z) - SPICE, A Dataset of Drug-like Molecules and Peptides for Training
Machine Learning Potentials [1.7044177326714558]
SPICEデータセットは、タンパク質と相互作用する薬物のような小さな分子のシミュレーションに関連するポテンシャルをトレーニングするための新しい量子化学データセットである。
この構造は、小さな分子、二量体、ジペプチド、および溶存アミノ酸の様々な集合に対する1100万以上のコンフォメーションを含んでいる。
15個の元素、荷電および非荷電分子、および幅広い共有結合および非共有結合相互作用を含む。
機械学習のポテンシャルのセットをトレーニングし、化学空間の広い領域にわたって化学的精度を達成できることを実証する。
論文 参考訳(メタデータ) (2022-09-21T23:02:59Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
本稿では,化学反応を用いて分子表現の学習を支援することを提案する。
本手法は,1) 埋め込み空間を適切に整理し, 2) 分子埋め込みの一般化能力を向上させるために有効であることが証明された。
実験結果から,本手法は様々なダウンストリームタスクにおける最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2021-09-21T00:08:43Z) - On the equivalence of molecular graph convolution and molecular wave
function with poor basis set [7.106986689736826]
量子物理学に基づく機械学習モデルである量子深度場(QDF)について述べる。
分子エネルギー予測タスクでは、外挿の可能性を実証し、小さな分子でQDFモデルを訓練し、大きな分子でテストし、高い性能を実現した。
論文 参考訳(メタデータ) (2020-11-16T13:20:35Z) - MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization [51.00815310242277]
生成モデルと強化学習アプローチは、最初の成功をおさめたが、複数の薬物特性を同時に最適化する上で、依然として困難に直面している。
本稿では,MultI-Constraint MOlecule SAmpling (MIMOSA)アプローチ,初期推定として入力分子を用いるサンプリングフレームワーク,ターゲット分布からのサンプル分子を提案する。
論文 参考訳(メタデータ) (2020-10-05T20:18:42Z) - End-to-End Differentiable Molecular Mechanics Force Field Construction [0.5269923665485903]
化学環境を知覚するためにグラフニューラルネットワークを用いる別のアプローチを提案する。
プロセス全体がモジュール化されており、モデルパラメータに関してエンドツーエンドの差別化が可能である。
本手法は, 従来の原子型を再現するだけでなく, 既存の分子力学力場を正確に再現し, 拡張することができることを示す。
論文 参考訳(メタデータ) (2020-10-02T20:59:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。