Multi-Faceted Question Complexity Estimation Targeting Topic Domain-Specificity
- URL: http://arxiv.org/abs/2408.12850v1
- Date: Fri, 23 Aug 2024 05:40:35 GMT
- Title: Multi-Faceted Question Complexity Estimation Targeting Topic Domain-Specificity
- Authors: Sujay R, Suki Perumal, Yash Nagraj, Anushka Ghei, Srinivas K S,
- Abstract summary: This paper presents a novel framework for domain-specific question difficulty estimation, leveraging a suite of NLP techniques and knowledge graph analysis.
We introduce four key parameters: Topic Retrieval Cost, Topic Salience, Topic Coherence, and Topic Superficiality.
A model trained on these features demonstrates the efficacy of our approach in predicting question difficulty.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Question difficulty estimation remains a multifaceted challenge in educational and assessment settings. Traditional approaches often focus on surface-level linguistic features or learner comprehension levels, neglecting the intricate interplay of factors contributing to question complexity. This paper presents a novel framework for domain-specific question difficulty estimation, leveraging a suite of NLP techniques and knowledge graph analysis. We introduce four key parameters: Topic Retrieval Cost, Topic Salience, Topic Coherence, and Topic Superficiality, each capturing a distinct facet of question complexity within a given subject domain. These parameters are operationalized through topic modelling, knowledge graph analysis, and information retrieval techniques. A model trained on these features demonstrates the efficacy of our approach in predicting question difficulty. By operationalizing these parameters, our framework offers a novel approach to question complexity estimation, paving the way for more effective question generation, assessment design, and adaptive learning systems across diverse academic disciplines.
Related papers
- Knowledge Tagging with Large Language Model based Multi-Agent System [17.53518487546791]
This paper investigates the use of a multi-agent system to address the limitations of previous algorithms.
We highlight the significant potential of an LLM-based multi-agent system in overcoming the challenges that previous methods have encountered.
arXiv Detail & Related papers (2024-09-12T21:39:01Z) - On the Role of Information Structure in Reinforcement Learning for Partially-Observable Sequential Teams and Games [55.2480439325792]
In a sequential decision-making problem, the information structure is the description of how events in the system occurring at different points in time affect each other.
By contrast, real-world sequential decision-making problems typically involve a complex and time-varying interdependence of system variables.
We formalize a novel reinforcement learning model which explicitly represents the information structure.
arXiv Detail & Related papers (2024-03-01T21:28:19Z) - Qsnail: A Questionnaire Dataset for Sequential Question Generation [76.616068047362]
We present the first dataset specifically constructed for the questionnaire generation task, which comprises 13,168 human-written questionnaires.
We conduct experiments on Qsnail, and the results reveal that retrieval models and traditional generative models do not fully align with the given research topic and intents.
Despite enhancements through the chain-of-thought prompt and finetuning, questionnaires generated by language models still fall short of human-written questionnaires.
arXiv Detail & Related papers (2024-02-22T04:14:10Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
Multimodal reasoning is a critical component in the pursuit of artificial intelligence systems that exhibit human-like intelligence.
We present Multi-Modal Reasoning(COCO-MMR) dataset, a novel dataset that encompasses an extensive collection of open-ended questions.
We propose innovative techniques, including multi-hop cross-modal attention and sentence-level contrastive learning, to enhance the image and text encoders.
arXiv Detail & Related papers (2023-07-24T08:58:25Z) - Towards a Holistic Understanding of Mathematical Questions with
Contrastive Pre-training [65.10741459705739]
We propose a novel contrastive pre-training approach for mathematical question representations, namely QuesCo.
We first design two-level question augmentations, including content-level and structure-level, which generate literally diverse question pairs with similar purposes.
Then, to fully exploit hierarchical information of knowledge concepts, we propose a knowledge hierarchy-aware rank strategy.
arXiv Detail & Related papers (2023-01-18T14:23:29Z) - A survey of Bayesian Network structure learning [8.411014222942168]
This paper provides a review of 61 algorithms proposed for learning BN structure from data.
The basic approach of each algorithm is described in consistent terms, and the similarities and differences between them highlighted.
Approaches for dealing with data noise in real-world datasets and incorporating expert knowledge into the learning process are also covered.
arXiv Detail & Related papers (2021-09-23T14:54:00Z) - The Modern Mathematics of Deep Learning [8.939008609565368]
We describe the new field of mathematical analysis of deep learning.
This field emerged around a list of research questions that were not answered within the classical of learning theory.
For selected approaches, we describe the main ideas in more detail.
arXiv Detail & Related papers (2021-05-09T21:30:42Z) - Predicting Themes within Complex Unstructured Texts: A Case Study on
Safeguarding Reports [66.39150945184683]
We focus on the problem of automatically identifying the main themes in a safeguarding report using supervised classification approaches.
Our results show the potential of deep learning models to simulate subject-expert behaviour even for complex tasks with limited labelled data.
arXiv Detail & Related papers (2020-10-27T19:48:23Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
We propose a novel learnable general-purpose regularizer exploiting recent architectural design patterns from deep learning.
We show state-of-the-art performance for classical image restoration and medical image reconstruction problems.
arXiv Detail & Related papers (2020-01-14T19:01:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.