論文の概要: Moral Judgments in Online Discourse are not Biased by Gender
- arxiv url: http://arxiv.org/abs/2408.12872v1
- Date: Fri, 23 Aug 2024 07:10:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:49:48.567543
- Title: Moral Judgments in Online Discourse are not Biased by Gender
- Title(参考訳): オンライン談話における道徳的判断はジェンダーによるバイアスを受けない
- Authors: Lorenzo Betti, Paolo Bajardi, Gianmarco De Francisci Morales,
- Abstract要約: r/AITAはRedditのコミュニティで1700万人のメンバーが参加し、コミュニティの行動に関する判断を求める経験を共有しています。
受理した道徳判断に対する主人公の性別の直接的な因果関係は見つからない。
本研究は、既存の相関研究を補完し、ジェンダーの役割が特定の社会的文脈により大きな影響を及ぼす可能性を示唆している。
- 参考スコア(独自算出の注目度): 3.2771631221674333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interaction between social norms and gender roles prescribes gender-specific behaviors that influence moral judgments. Here, we study how moral judgments are biased by the gender of the protagonist of a story. Using data from r/AITA, a Reddit community with 17 million members who share first-hand experiences seeking community judgment on their behavior, we employ machine learning techniques to match stories describing similar situations that differ only by the protagonist's gender. We find no direct causal effect of the protagonist's gender on the received moral judgments, except for stories about ``friendship and relationships'', where male protagonists receive more negative judgments. Our findings complement existing correlational studies and suggest that gender roles may exert greater influence in specific social contexts. These results have implications for understanding sociological constructs and highlight potential biases in data used to train large language models.
- Abstract(参考訳): 社会的規範とジェンダーの役割の相互作用は、道徳的判断に影響を与えるジェンダー固有の振る舞いを規定する。
本稿では,物語の主人公のジェンダーに道徳的判断が偏っているかを検討する。
r/AITAというRedditコミュニティの1700万人のメンバが、コミュニティの行動に関する判断を求める経験を共有できるデータを用いて、私たちは、主人公の性別によってのみ異なる同様の状況を説明するストーリーをマッチングするために、機械学習技術を使用します。
男性主人公がより否定的な判断を受ける「友情と関係」の物語を除いて、主人公の性別が受けられる道徳的判断に直接的な因果関係は見つからない。
本研究は、既存の相関研究を補完し、ジェンダーの役割が特定の社会的文脈により大きな影響を及ぼす可能性を示唆している。
これらの結果は、社会学的構造を理解し、大きな言語モデルの学習に使用されるデータの潜在的なバイアスを明らかにすることにつながる。
関連論文リスト
- Revealing and Reducing Gender Biases in Vision and Language Assistants (VLAs) [82.57490175399693]
画像・テキスト・ビジョン言語アシスタント(VLA)22種における性別バイアスの検討
以上の結果から,VLAは実世界の作業不均衡など,データ中の人間のバイアスを再現する可能性が示唆された。
これらのモデルにおける性別バイアスを排除するため、微調整に基づくデバイアス法は、下流タスクにおけるデバイアスとパフォーマンスの最良のトレードオフを実現する。
論文 参考訳(メタデータ) (2024-10-25T05:59:44Z) - MoCa: Measuring Human-Language Model Alignment on Causal and Moral
Judgment Tasks [49.60689355674541]
認知科学の豊富な文献は人々の因果関係と道徳的直観を研究してきた。
この研究は、人々の判断に体系的に影響を及ぼす多くの要因を明らかにした。
大規模言語モデル(LLM)が、人間の参加者と一致するテキストベースのシナリオについて因果的、道徳的な判断を下すかどうかを検証する。
論文 参考訳(メタデータ) (2023-10-30T15:57:32Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
近年の研究では、伝統的な妖精は有害な性バイアスを伴っていることが示されている。
本研究は,ジェンダーの摂動に対する頑健さを評価することによって,言語モデルの学習バイアスを評価することを目的とする。
論文 参考訳(メタデータ) (2023-10-16T22:25:09Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Fairness in AI Systems: Mitigating gender bias from language-vision
models [0.913755431537592]
既存のデータセットにおける性別バイアスの影響について検討する。
本稿では,キャプションに基づく言語視覚モデルにおけるその影響を緩和する手法を提案する。
論文 参考訳(メタデータ) (2023-05-03T04:33:44Z) - A Moral- and Event- Centric Inspection of Gender Bias in Fairy Tales at
A Large Scale [50.92540580640479]
7つの文化から得られた624個の妖精物語を含む妖精物語データセットにおいて,ジェンダーバイアスを計算的に解析した。
その結果,男性キャラクターの数は女性キャラクターの2倍であり,男女表現が不均等であることが判明した。
女性キャラクターは、注意、忠誠、尊厳に関する道徳的な言葉とより関連しているのに対し、男性キャラクターは、公正、権威に関する道徳的な単語とより関連している。
論文 参考訳(メタデータ) (2022-11-25T19:38:09Z) - Uncovering Implicit Gender Bias in Narratives through Commonsense
Inference [21.18458377708873]
モデル生成物語における主人公に関連する性別バイアスについて検討する。
暗黙のバイアスに注目し、コモンセンス推論エンジンを使ってそれらを明らかにする。
論文 参考訳(メタデータ) (2021-09-14T04:57:45Z) - Can gender inequality be created without inter-group discrimination? [0.0]
単純なエージェントベースの動的プロセスが男女不平等を生じさせるかどうかを検証した。
我々は、ランダムに選択されたエージェントのペアで相互作用する集団をシミュレートし、自己および他者の評価判断に影響を及ぼす。
偏見, ステレオタイプ, 分離, 分類がなければ, 本モデルは, ガラス天井効果の安定性, 調和性, 特性を示す自己評価と状態の群間不平等を生じさせる。
論文 参考訳(メタデータ) (2020-05-05T07:33:27Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z) - Unsupervised Discovery of Implicit Gender Bias [38.59057512390926]
我々は、女性に対する性的偏見をコメントレベルで識別するために、教師なしのアプローチをとる。
主な課題は、データ内の他のアーティファクトではなく、暗黙のバイアスの兆候にモデルを集中させることです。
論文 参考訳(メタデータ) (2020-04-17T17:36:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。