Deep Fourier-embedded Network for RGB and Thermal Salient Object Detection
- URL: http://arxiv.org/abs/2411.18409v2
- Date: Mon, 10 Feb 2025 02:15:57 GMT
- Title: Deep Fourier-embedded Network for RGB and Thermal Salient Object Detection
- Authors: Pengfei Lyu, Pak-Hei Yeung, Xiaosheng Yu, Chengdong Wu, Jagath C. Rajapakse,
- Abstract summary: Deep learning has significantly improved salient object detection (SOD) combining both RGB and thermal (RGB-T) images.
Existing deep learning-based RGB-T SOD models suffer from two major limitations.
We propose a purely Fourier transform-based model, namely Deep Fourier-Embedded Network (DFENet) for accurate RGB-T SOD.
- Score: 8.607385112274882
- License:
- Abstract: The rapid development of deep learning has significantly improved salient object detection (SOD) combining both RGB and thermal (RGB-T) images. However, existing deep learning-based RGB-T SOD models suffer from two major limitations. First, Transformer-based models with quadratic complexity are computationally expensive and memory-intensive, limiting their application in high-resolution bi-modal feature fusion. Second, even when these models converge to an optimal solution, there remains a frequency gap between the prediction and ground-truth. To overcome these limitations, we propose a purely Fourier transform-based model, namely Deep Fourier-Embedded Network (DFENet), for accurate RGB-T SOD. To address the computational complexity when dealing with high-resolution images, we leverage the efficiency of fast Fourier transform with linear complexity to design three key components: (1) the Modal-coordinated Perception Attention, which fuses RGB and thermal modalities with enhanced multi-dimensional representation; (2) the Frequency-decomposed Edge-aware Block, which clarifies object edges by deeply decomposing and enhancing frequency components of low-level features; and (3) the Fourier Residual Channel Attention Block, which prioritizes high-frequency information while aligning channel-wise global relationships. To mitigate the frequency gap, we propose Co-focus Frequency Loss, which dynamically weights hard frequencies during edge frequency reconstruction by cross-referencing bi-modal edge information in the Fourier domain. Extensive experiments on four RGB-T SOD benchmark datasets demonstrate that DFENet outperforms fifteen existing state-of-the-art RGB-T SOD models. Comprehensive ablation studies further validate the value and effectiveness of our newly proposed components. The code is available at https://github.com/JoshuaLPF/DFENet.
Related papers
- Bringing RGB and IR Together: Hierarchical Multi-Modal Enhancement for Robust Transmission Line Detection [67.02804741856512]
We propose a novel Hierarchical Multi-Modal Enhancement Network (HMMEN) that integrates RGB and IR data for robust and accurate TL detection.
Our method introduces two key components: (1) a Mutual Multi-Modal Enhanced Block (MMEB), which fuses and enhances hierarchical RGB and IR feature maps in a coarse-to-fine manner, and (2) a Feature Alignment Block (FAB) that corrects misalignments between decoder outputs and IR feature maps by leveraging deformable convolutions.
arXiv Detail & Related papers (2025-01-25T06:21:06Z) - MDNF: Multi-Diffusion-Nets for Neural Fields on Meshes [5.284425534494986]
We propose a novel framework for representing neural fields on triangle meshes that is multi-resolution across both spatial and frequency domains.
Inspired by the Neural Fourier Filter Bank (NFFB), our architecture decomposes the frequencies and frequency domains by associating finer resolution levels with higher frequency bands.
We demonstrate the effectiveness of our approach through its application to diverse neural fields, such as synthetic RGB functions, UV texture coordinates, and normals.
arXiv Detail & Related papers (2024-09-04T19:08:13Z) - Residual Spatial Fusion Network for RGB-Thermal Semantic Segmentation [19.41334573257174]
Traditional methods mostly use RGB images which are heavily affected by lighting conditions, eg, darkness.
Recent studies show thermal images are robust to the night scenario as a compensating modality for segmentation.
This work proposes a Residual Spatial Fusion Network (RSFNet) for RGB-T semantic segmentation.
arXiv Detail & Related papers (2023-06-17T14:28:08Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Interactive Context-Aware Network for RGB-T Salient Object Detection [7.544240329265388]
We propose a novel network called Interactive Context-Aware Network (ICANet)
ICANet contains three modules that can effectively perform the cross-modal and cross-scale fusions.
Experiments prove that our network performs favorably against the state-of-the-art RGB-T SOD methods.
arXiv Detail & Related papers (2022-11-11T10:04:36Z) - CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient
Object Detection [144.66411561224507]
We present a convolutional neural network (CNN) model, named CIR-Net, based on the novel cross-modality interaction and refinement.
Our network outperforms the state-of-the-art saliency detectors both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-10-06T11:59:19Z) - Mirror Complementary Transformer Network for RGB-thermal Salient Object
Detection [16.64781797503128]
RGB-thermal object detection (RGB-T SOD) aims to locate the common prominent objects of an aligned visible and thermal infrared image pair.
In this paper, we propose a novel mirror complementary Transformer network (MCNet) for RGB-T SOD.
Experiments on benchmark and VT723 datasets show that the proposed method outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2022-07-07T20:26:09Z) - Transformer-based Network for RGB-D Saliency Detection [82.6665619584628]
Key to RGB-D saliency detection is to fully mine and fuse information at multiple scales across the two modalities.
We show that transformer is a uniform operation which presents great efficacy in both feature fusion and feature enhancement.
Our proposed network performs favorably against state-of-the-art RGB-D saliency detection methods.
arXiv Detail & Related papers (2021-12-01T15:53:58Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.