Spatio-Temporal Road Traffic Prediction using Real-time Regional Knowledge
- URL: http://arxiv.org/abs/2408.12882v1
- Date: Fri, 23 Aug 2024 07:34:26 GMT
- Title: Spatio-Temporal Road Traffic Prediction using Real-time Regional Knowledge
- Authors: Sumin Han, Jisun An, Dongman Lee,
- Abstract summary: This paper presents a novel method that embeds real-time region-level knowledge using POIs, satellite images, and real-time access traces via LTE.
It then ingests this embedded knowledge into a road-level attention-based prediction model.
Experimental results on real-world road traffic prediction show that our model outperforms the baselines.
- Score: 2.6998782337240925
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For traffic prediction in transportation services such as car-sharing and ride-hailing, mid-term road traffic prediction (within a few hours) is considered essential. However, the existing road-level traffic prediction has mainly studied how significantly micro traffic events propagate to the adjacent roads in terms of short-term prediction. On the other hand, recent attempts have been made to incorporate regional knowledge such as POIs, road characteristics, and real-time social events to help traffic prediction. However, these studies lack in understandings of different modalities of road-level and region-level spatio-temporal correlations and how to combine such knowledge. This paper proposes a novel method that embeds real-time region-level knowledge using POIs, satellite images, and real-time LTE access traces via a regional spatio-temporal module that consists of dynamic convolution and temporal attention, and conducts bipartite spatial transform attention to convert into road-level knowledge. Then the model ingests this embedded knowledge into a road-level attention-based prediction model. Experimental results on real-world road traffic prediction show that our model outperforms the baselines.
Related papers
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.
We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.
We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - Accounting for Work Zone Disruptions in Traffic Flow Forecasting [2.124091149604821]
We build over the convolutional graph neural network architecture and present a novel Graph Convolutional for Road Work Zones" model.
The model is evaluated on two data sets that minimize traffic in presence of work zones in the Commonwealth of Virginia.
arXiv Detail & Related papers (2024-07-16T05:48:24Z) - SST-GCN: The Sequential based Spatio-Temporal Graph Convolutional networks for Minute-level and Road-level Traffic Accident Risk Prediction [1.2815904071470705]
This paper proposes the Sequential based Spatio-Temporal Graph Convolutional Networks (SST-GCN) to predict traffic accidents at the Minute-Level and Road-Level.
Experiments have demonstrated that SST-GCN outperforms other state-of-the-art models in Minute-Level predictions.
arXiv Detail & Related papers (2024-05-28T21:33:18Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
We propose an improved traffic prediction method based on graph convolution deep learning algorithms.
We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns.
arXiv Detail & Related papers (2023-08-20T14:31:55Z) - Uncertainty Quantification for Image-based Traffic Prediction across
Cities [63.136794104678025]
Uncertainty quantification (UQ) methods provide an approach to induce probabilistic reasoning.
We investigate their application to a large-scale image-based traffic dataset spanning multiple cities.
We find that our approach can capture both temporal and spatial effects on traffic behaviour in a representative case study for the city of Moscow.
arXiv Detail & Related papers (2023-08-11T13:35:52Z) - A Transfer Learning Framework for Proactive Ramp Metering Performance
Assessment [2.269435462100948]
This study presents a framework for predicting freeway traffic parameters for the after situations when a new ramp metering control strategy is implemented.
By learning the association between the spatial-temporal features of traffic states in before and after situations for known freeway segments, the proposed framework can transfer this learning to predict the traffic parameters for new freeway segments.
arXiv Detail & Related papers (2023-08-07T12:44:10Z) - Behavioral Intention Prediction in Driving Scenes: A Survey [70.53285924851767]
Behavioral Intention Prediction (BIP) simulates a human consideration process and fulfills the early prediction of specific behaviors.
This work provides a comprehensive review of BIP from the available datasets, key factors and challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications.
arXiv Detail & Related papers (2022-11-01T11:07:37Z) - A Graph Convolutional Network with Signal Phasing Information for
Arterial Traffic Prediction [63.470149585093665]
arterial traffic prediction plays a crucial role in the development of modern intelligent transportation systems.
Many existing studies on arterial traffic prediction only consider temporal measurements of flow and occupancy from loop sensors and neglect the rich spatial relationships between upstream and downstream detectors.
We fill this gap by enhancing a deep learning approach, Diffusion Convolutional Recurrent Neural Network, with spatial information generated from signal timing plans at targeted intersections.
arXiv Detail & Related papers (2020-12-25T01:40:29Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - Deep Learning on Traffic Prediction: Methods, Analysis and Future
Directions [32.25707921285397]
This paper provides a comprehensive survey on deep learning-based approaches in traffic prediction from multiple perspectives.
We first summarize the existing traffic prediction methods, and give a taxonomy.
Second, we list the state-of-the-art approaches in different traffic prediction applications.
arXiv Detail & Related papers (2020-04-18T08:28:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.