論文の概要: Multiple Areal Feature Aware Transportation Demand Prediction
- arxiv url: http://arxiv.org/abs/2408.12890v1
- Date: Fri, 23 Aug 2024 07:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:49:48.544464
- Title: Multiple Areal Feature Aware Transportation Demand Prediction
- Title(参考訳): 交通需要予測の多面的特徴
- Authors: Sumin Han, Jisun An, Youngjun Park, Suji Kim, Kitae Jang, Dongman Lee,
- Abstract要約: 本稿では,多機能グラフ畳み込みリカレントネットワーク(ST-MFGCRN)を提案する。
提案手法を実世界の2つの交通データセット上で評価する。
- 参考スコア(独自算出の注目度): 2.996323123990199
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A reliable short-term transportation demand prediction supports the authorities in improving the capability of systems by optimizing schedules, adjusting fleet sizes, and generating new transit networks. A handful of research efforts incorporate one or a few areal features while learning spatio-temporal correlation, to capture similar demand patterns between similar areas. However, urban characteristics are polymorphic, and they need to be understood by multiple areal features such as land use, sociodemographics, and place-of-interest (POI) distribution. In this paper, we propose a novel spatio-temporal multi-feature-aware graph convolutional recurrent network (ST-MFGCRN) that fuses multiple areal features during spatio-temproal understanding. Inside ST-MFGCRN, we devise sentinel attention to calculate the areal similarity matrix by allowing each area to take partial attention if the feature is not useful. We evaluate the proposed model on two real-world transportation datasets, one with our constructed BusDJ dataset and one with benchmark TaxiBJ. Results show that our model outperforms the state-of-the-art baselines up to 7\% on BusDJ and 8\% on TaxiBJ dataset.
- Abstract(参考訳): 信頼性の高い短期輸送需要予測は、スケジュールを最適化し、艦隊規模を調整し、新たな交通網を創出することにより、システムの能力向上を支援する。
いくつかの研究は、類似の領域間の同様の需要パターンを捉えるために、時空間相関を学習しながら、1つまたはいくつかのアラルの特徴を取り入れている。
しかし, 都市の特徴は多型的であり, 土地利用, 社会デマトグラフィー, 興味の場所(POI)分布など, 複数の地域の特徴によって理解する必要がある。
本稿では,時空間理解において複数のアレー特徴を融合させる新しい時空間多機能グラフ畳み込み回路(ST-MFGCRN)を提案する。
ST-MFGCRNでは,特徴が有用でない場合,各領域に部分的注意を払わせることで,アダル類似度行列を計算するためにセンチネル注意を考案した。
構築したBusDJデータセットとベンチマークによるTaxiBJの2つの実世界交通データセットについて,提案モデルの評価を行った。
その結果,このモデルでは,BusDJでは7倍,TaxiBJデータセットでは8倍,最先端のベースラインでは最大7倍であることがわかった。
関連論文リスト
- Traffic Prediction considering Multiple Levels of Spatial-temporal Information: A Multi-scale Graph Wavelet-based Approach [3.343804744266258]
本研究では,複雑な交通ネットワークにおける交通状態を予測するためのグラフウェーブレット時間畳み込みネットワーク(MSGWTCN)を提案する。
シアトルのハイウェイネットワークやニューヨーク市マンハッタンの高密度道路ネットワークなど、モデルのパフォーマンスを調べるために、2つの実世界のデータセットが使用されている。
論文 参考訳(メタデータ) (2024-06-18T20:05:47Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Exploring Multimodal Sentiment Analysis via CBAM Attention and
Double-layer BiLSTM Architecture [3.9850392954445875]
本モデルでは,文中の長距離依存関係を抽出するためにBERT + BiLSTM を用いる。
余分な情報を除去するために、テキスト特徴と画像特徴をスプライシングした後、CNNとCBAMの注意を追加する。
実験結果から,従来のモデルと同様の音響効果が得られた。
論文 参考訳(メタデータ) (2023-03-26T12:34:01Z) - Public Transit Arrival Prediction: a Seq2Seq RNN Approach [1.9294297881760765]
バス到着時刻予測(BATP)は特に発展途上国では難しい問題である。
現在の作業において、BATP(リアルタイム)に対して、リカレントニューラルネットワーク(RNN)に基づく新しいデータ駆動モデルを提案する。
論文 参考訳(メタデータ) (2022-10-04T14:58:12Z) - FuTH-Net: Fusing Temporal Relations and Holistic Features for Aerial
Video Classification [49.06447472006251]
本稿では,FuTH-Netと呼ばれる新しいディープニューラルネットワークを提案する。
本モデルは,ERAとDrone-Actionの2つの航空映像分類データセットを用いて評価し,最先端の成果を得た。
論文 参考訳(メタデータ) (2022-09-22T21:15:58Z) - Automated Dilated Spatio-Temporal Synchronous Graph Modeling for Traffic
Prediction [1.6449390849183363]
本稿では,トラフィック予測のための自動拡張時間同期グラフネットワーク予測であるAuto-DSTSを提案する。
具体的には,短期および長期の相関関係を捉えるための自動拡張時間時間グラフ (Auto-DSTS) モジュールを提案する。
我々のモデルは最先端の手法と比較して約10%改善できる。
論文 参考訳(メタデータ) (2022-07-22T00:50:39Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - Real-Time Forecasting of Dockless Scooter-Sharing Demand: A
Spatio-Temporal Multi-Graph Transformer Approach [5.6973480878880824]
本稿では,S-TMGT (S-Temporal Multi-Graph Transformer) という新しいディープラーニングアーキテクチャを提案する。
提案したモデルは、マイクロモビリティーオペレーターが最適な車両再バランススキームを開発し、ドックレススクーターシェアリングオペレーションをよりよく管理するために都市を案内するのに役立つ。
論文 参考訳(メタデータ) (2021-11-02T03:48:48Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
SMARTと呼ばれるグラフベースのフレームワークが提案され、大規模な地理的領域にわたるV2I通信遅延の統計をモデル化し、追跡する。
深層Q-networksアルゴリズムと統合したグラフ畳み込みネットワークを用いたグラフ再構築型手法を開発する。
その結果,提案手法は,モデル化の精度と効率と,大規模車両ネットワークにおける遅延性能を有意に向上させることが示された。
論文 参考訳(メタデータ) (2021-03-13T06:56:29Z) - FMA-ETA: Estimating Travel Time Entirely Based on FFN With Attention [88.33372574562824]
フィードフォワードネットワーク(FFN, FFN, 複数要素自己認識(FMA-ETA)に基づく新しいフレームワークを提案する。
異なるカテゴリの特徴に対処し,情報を意図的に集約する,新しい多要素自己認識機構を提案する。
実験の結果、FMA-ETAは予測精度において最先端の手法と競合し、推論速度は大幅に向上した。
論文 参考訳(メタデータ) (2020-06-07T08:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。