論文の概要: Abductive and Contrastive Explanations for Scoring Rules in Voting
- arxiv url: http://arxiv.org/abs/2408.12927v1
- Date: Fri, 23 Aug 2024 09:12:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:40:04.897461
- Title: Abductive and Contrastive Explanations for Scoring Rules in Voting
- Title(参考訳): 投票におけるスコーリング規則の帰納的・反トラスト的説明
- Authors: Clément Contet, Umberto Grandi, Jérôme Mengin,
- Abstract要約: 我々は、ルールの採点のための帰納的および対照的な説明を計算するためのアルゴリズムを設計する。
ボルダの法則では、最小の導出的説明の大きさの低い境界を求める。
選好プロファイルの特性と最小誘引的説明の大きさの相関関係をシミュレーションにより同定する。
- 参考スコア(独自算出の注目度): 5.928530455750507
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We view voting rules as classifiers that assign a winner (a class) to a profile of voters' preferences (an instance). We propose to apply techniques from formal explainability, most notably abductive and contrastive explanations, to identify minimal subsets of a preference profile that either imply the current winner or explain why a different candidate was not elected. Formal explanations turn out to have strong connections with classical problems studied in computational social choice such as bribery, possible and necessary winner identification, and preference learning. We design algorithms for computing abductive and contrastive explanations for scoring rules. For the Borda rule, we find a lower bound on the size of the smallest abductive explanations, and we conduct simulations to identify correlations between properties of preference profiles and the size of their smallest abductive explanations.
- Abstract(参考訳): 我々は、投票ルールを、勝者(クラス)を有権者の好み(例)のプロファイルに割り当てる分類子として見ている。
そこで本稿では,選好プロファイルの最小部分集合を同定するために,形式的説明可能性,特に誘惑的かつコントラスト的な説明から手法を適用することを提案する。
形式的な説明は、収賄、可能で必要な勝者の識別、選好学習などの計算社会選択において研究された古典的な問題と強い関係があることが判明した。
我々は、ルールの採点のための帰納的および対照的な説明を計算するためのアルゴリズムを設計する。
ボルダ法則では、最小の導出的説明量の大きさの低い境界を見つけ、選好プロファイルの特性と最小の導出的説明量の間の相関を同定するシミュレーションを行う。
関連論文リスト
- DeepVoting: Learning Voting Rules with Tailored Embeddings [13.037431161285971]
我々は、よい投票規則を設計する問題は、投票規則の確率的なバージョンを学ぶことの1つに再キャストする。
社会的選択文献からの選好プロファイルの埋め込みにより,既存の投票ルールをより効率的に学習できることを示す。
また、埋め込みを用いて学習したルールを微調整して、公理特性を改善した新しい投票ルールを作成することも示している。
論文 参考訳(メタデータ) (2024-08-24T17:15:20Z) - Clash of the Explainers: Argumentation for Context-Appropriate
Explanations [6.8285745209093145]
特定のコンテキストに最も適したアプローチはひとつもありません。
AIの説明容易性を効果的にするためには、説明とそれらがどのように提示されるかは、説明を受けるステークホルダーに向けられる必要がある。
本稿では、関係する利害関係者の精神モデルと、多説明者による議論問題を解決する理性コンポーネントと、利害関係者に適切に説明すべきAIモデルとからなるモジュラー推論システムを提案する。
論文 参考訳(メタデータ) (2023-12-12T09:52:30Z) - Explanation Selection Using Unlabeled Data for Chain-of-Thought
Prompting [80.9896041501715]
非専門家によって書かれたオフ・ザ・シェルフの説明のように、タスクのために"チューニング"されていない説明は、中途半端なパフォーマンスをもたらす可能性がある。
本稿では,ブラックボックス方式で説明拡散プロンプトを最適化する方法の課題に対処する。
論文 参考訳(メタデータ) (2023-02-09T18:02:34Z) - Explaining $\mathcal{ELH}$ Concept Descriptions through Counterfactual
Reasoning [3.5323691899538128]
分類を本質的に透過的に行う方法は、記述論理の概念を使用することである。
一つの解決策は、「異なる分類を得るために特徴値をどう変えなければならないか」という疑問に答えるために反事実を用いることである。
論文 参考訳(メタデータ) (2023-01-12T16:06:06Z) - Search Methods for Sufficient, Socially-Aligned Feature Importance
Explanations with In-Distribution Counterfactuals [72.00815192668193]
特徴重要度(FI)推定は一般的な説明形式であり、テスト時に特定の入力特徴を除去することによって生じるモデル信頼度の変化を計算し、評価することが一般的である。
FIに基づく説明の未探索次元についていくつかの考察を行い、この説明形式に対する概念的および実証的な改善を提供する。
論文 参考訳(メタデータ) (2021-06-01T20:36:48Z) - Contrastive Explanations for Model Interpretability [77.92370750072831]
分類モデルの対照的説明を生成する手法を提案する。
本手法は潜在空間へのモデル表現の投影に基づいている。
本研究は,モデル決定のより正確できめ細かな解釈性を提供するためのラベルコントラスト的説明の能力に光を当てた。
論文 参考訳(メタデータ) (2021-03-02T00:36:45Z) - ExplanationLP: Abductive Reasoning for Explainable Science Question
Answering [4.726777092009554]
本稿では,帰納的推論問題としての質問応答について考察する。
それぞれの選択に対して妥当な説明を構築し、最終回答として最適な説明で候補を選択する。
提案システムであるExplainationLPは,各候補の回答に対して,関連事実の重み付きグラフを構築して説明を行う。
論文 参考訳(メタデータ) (2020-10-25T14:49:24Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
機能に基づく説明は、自明なモデルでも問題を引き起こすことを示す。
そこで本研究では,2つの一般的な説明書クラスであるシェープリー説明書と十分最小限の部分集合説明書が,基本的に異なる基底的説明書のタイプをターゲットにしていることを示す。
論文 参考訳(メタデータ) (2020-09-23T09:45:23Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
分析による特徴に基づく説明の新たな評価基準を確立する。
我々は、緩やかに必要であり、予測に十分である新しい説明を得る。
我々は、現在の予測をターゲットクラスに移動させる一連の特徴を抽出するために、説明を拡張します。
論文 参考訳(メタデータ) (2020-05-31T05:52:05Z) - SCOUT: Self-aware Discriminant Counterfactual Explanations [78.79534272979305]
対物的視覚的説明の問題点を考察する。
新しい差別的な説明の族が紹介される。
結果として生じる反実的な説明は、最適化が自由で、従って以前の方法よりもはるかに高速である。
論文 参考訳(メタデータ) (2020-04-16T17:05:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。