論文の概要: ExplanationLP: Abductive Reasoning for Explainable Science Question
Answering
- arxiv url: http://arxiv.org/abs/2010.13128v1
- Date: Sun, 25 Oct 2020 14:49:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-03 04:11:45.244240
- Title: ExplanationLP: Abductive Reasoning for Explainable Science Question
Answering
- Title(参考訳): 解説LP:説明可能な科学質問に対する帰納的推論
- Authors: Mokanarangan Thayaparan, Marco Valentino, Andr\'e Freitas
- Abstract要約: 本稿では,帰納的推論問題としての質問応答について考察する。
それぞれの選択に対して妥当な説明を構築し、最終回答として最適な説明で候補を選択する。
提案システムであるExplainationLPは,各候補の回答に対して,関連事実の重み付きグラフを構築して説明を行う。
- 参考スコア(独自算出の注目度): 4.726777092009554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel approach for answering and explaining multiple-choice
science questions by reasoning on grounding and abstract inference chains. This
paper frames question answering as an abductive reasoning problem, constructing
plausible explanations for each choice and then selecting the candidate with
the best explanation as the final answer. Our system, ExplanationLP, elicits
explanations by constructing a weighted graph of relevant facts for each
candidate answer and extracting the facts that satisfy certain structural and
semantic constraints. To extract the explanations, we employ a linear
programming formalism designed to select the optimal subgraph. The graphs'
weighting function is composed of a set of parameters, which we fine-tune to
optimize answer selection performance. We carry out our experiments on the
WorldTree and ARC-Challenge corpus to empirically demonstrate the following
conclusions: (1) Grounding-Abstract inference chains provides the semantic
control to perform explainable abductive reasoning (2) Efficiency and
robustness in learning with a fewer number of parameters by outperforming
contemporary explainable and transformer-based approaches in a similar setting
(3) Generalisability by outperforming SOTA explainable approaches on general
science question sets.
- Abstract(参考訳): 本稿では,接地と抽象的推論連鎖を推論し,多言語科学的な問いに答え,説明するための新しいアプローチを提案する。
本稿では,質問応答を帰納的推論問題として定式化し,各選択に対して妥当な説明を構築し,最善の説明を最終回答として候補を選択する。
提案システムであるExplanationLPは,各候補に対する関連事実の重み付きグラフを構築し,特定の構造的制約や意味的制約を満たす事実を抽出することによって,説明を導き出す。
説明を抽出するために、最適な部分グラフを選択するために設計された線形プログラミング形式を用いる。
グラフの重み付け関数はパラメータの集合で構成されており、答えの選択性能を最適化するために微調整する。
We carry out our experiments on the WorldTree and ARC-Challenge corpus to empirically demonstrate the following conclusions: (1) Grounding-Abstract inference chains provides the semantic control to perform explainable abductive reasoning (2) Efficiency and robustness in learning with a fewer number of parameters by outperforming contemporary explainable and transformer-based approaches in a similar setting (3) Generalisability by outperforming SOTA explainable approaches on general science question sets.
関連論文リスト
- Leveraging Structured Information for Explainable Multi-hop Question
Answering and Reasoning [14.219239732584368]
本研究では,マルチホップ質問応答のための抽出された意味構造(グラフ)の構築と活用について検討する。
実験結果と人的評価の結果から、我々のフレームワークはより忠実な推論連鎖を生成し、2つのベンチマークデータセットのQA性能を大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T05:32:39Z) - Axiomatic Aggregations of Abductive Explanations [13.277544022717404]
ポストホックモデル近似説明法のロバスト性に対する最近の批判は、モデル精度の誘引的説明の台頭につながっている。
そのような場合、単一の帰納的説明を提供することは不十分であり、一方、有効な帰納的説明を提供することは、その大きさのため理解できない。
本稿では,協調ゲーム理論のパワー指標に基づく2つのアグリゲーション法と,因果強度のよく知られた尺度に基づく3番目の方法を提案する。
論文 参考訳(メタデータ) (2023-09-29T04:06:10Z) - Explanation Selection Using Unlabeled Data for Chain-of-Thought
Prompting [80.9896041501715]
非専門家によって書かれたオフ・ザ・シェルフの説明のように、タスクのために"チューニング"されていない説明は、中途半端なパフォーマンスをもたらす可能性がある。
本稿では,ブラックボックス方式で説明拡散プロンプトを最適化する方法の課題に対処する。
論文 参考訳(メタデータ) (2023-02-09T18:02:34Z) - Complementary Explanations for Effective In-Context Learning [77.83124315634386]
大規模言語モデル (LLM) は、説明のインプロンプトから学習する際、顕著な能力を示した。
この研究は、文脈内学習に説明が使用されるメカニズムをよりよく理解することを目的としている。
論文 参考訳(メタデータ) (2022-11-25T04:40:47Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
複雑な実生活シナリオにおけるモデルの論理的推論能力を調べるためのベンチマークを提案する。
推論のマルチホップ連鎖に基づいて、説明形式は3つの主成分を含む。
この新たな説明形式を用いて,現在のベストモデルの性能を評価した。
論文 参考訳(メタデータ) (2022-10-22T16:01:13Z) - The Unreliability of Explanations in Few-Shot In-Context Learning [50.77996380021221]
我々は、テキスト上の推論、すなわち質問応答と自然言語推論を含む2つのNLPタスクに焦点を当てる。
入力と論理的に整合した説明は、通常より正確な予測を示す。
本稿では,説明の信頼性に基づいてモデル予測を校正する枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-06T17:57:58Z) - Explanatory Paradigms in Neural Networks [18.32369721322249]
本稿では、推論に基づく質問に対する解答として説明を考慮し、ニューラルネットワークにおける説明可能性の研究に飛躍的に拡張する。
これらの質問に対する回答は, それぞれ, 相関, 反事実, 対照的な説明である。
この用語は、訓練されたニューラルネットワークが決定を下した後に、説明的手法が$P$を説明したとき、ホック後の説明可能性の特定のケースを指す。
論文 参考訳(メタデータ) (2022-02-24T00:22:11Z) - Human Interpretation of Saliency-based Explanation Over Text [65.29015910991261]
テキストデータ上でのサリエンシに基づく説明について検討する。
人はしばしば説明を誤って解釈する。
本稿では,過度知覚と過小認識のモデル推定に基づいて,サリエンシを調整する手法を提案する。
論文 参考訳(メタデータ) (2022-01-27T15:20:32Z) - Ranking Facts for Explaining Answers to Elementary Science Questions [1.4091801425319965]
小学校の理科試験では、学生は通常4つの選択肢の中から1つの答えを選び、なぜその選択をしたのかを説明することができる。
我々は,人間による事実から回答を導き出す新しい課題について考察する。
説明は、WorldTree corpus内の5000近い候補事実の人間による注釈付きセットから作成されます。
論文 参考訳(メタデータ) (2021-10-18T06:15:11Z) - Discrete Reasoning Templates for Natural Language Understanding [79.07883990966077]
我々は,複雑な質問をより単純な質問に分解する手法を提案する。
事前定義された推論テンプレートの指示に従って最終回答を導出する。
我々のアプローチは、解釈可能でありながら最先端技術と競合し、監督をほとんど必要としないことを示す。
論文 参考訳(メタデータ) (2021-04-05T18:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。