論文の概要: Open Llama2 Model for the Lithuanian Language
- arxiv url: http://arxiv.org/abs/2408.12963v1
- Date: Fri, 23 Aug 2024 10:18:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:30:07.851842
- Title: Open Llama2 Model for the Lithuanian Language
- Title(参考訳): リトアニア語のOpen Llama2モデル
- Authors: Artūras Nakvosas, Povilas Daniušis, Vytas Mulevičius,
- Abstract要約: リトアニア語に対する最初のオープンなLlama2大言語モデル(LLM)を提案し,記述する。
本稿では,オープン地域LSMの簡単なレビューと,提案するLSMとそのトレーニングプロセスの詳細情報について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose and describe the first open Llama2 large language models (LLMs) for the Lithuanian language, including an accompanying question/answer (Q/A) dataset and translations of popular LLM benchmarks. We provide a brief review of open regional LLMs and detailed information on the proposed LLMs and their training process. We also conduct an empirical evaluation, comparing the perplexities of the proposed LLMs with those of other modern open LLMs. In addition, benchmarking the proposed LLMs against language understanding tasks reveals that high-quality pretraining datasets may be essential for achieving models that perform efficiently on these benchmarks. The full realisations of the described LLMs are available in the accompanying open repository~\url{https://huggingface.co/neurotechnology}.
- Abstract(参考訳): 本稿では,リトアニア語に対する最初のオープンなLlama2大言語モデル (LLM) を提案する。
本稿では,オープン地域LSMの簡単なレビューと,提案するLSMとそのトレーニングプロセスの詳細情報について述べる。
また,提案するLLMの難易度と,他の開放LDMの難易度を比較検討した。
さらに、言語理解タスクに対するLLMのベンチマークでは、これらのベンチマークで効率的に機能するモデルを実現するためには、高品質な事前学習データセットが不可欠であることが示された。
記述されたLLMの完全な実現は、付随するオープンリポジトリ~\url{https://huggingface.co/neurotechnology}で利用可能である。
関連論文リスト
- Leveraging Open-Source Large Language Models for Native Language Identification [1.6267479602370543]
ネイティブ言語識別(NLI)は、法医学、マーケティング、第二言語習得に応用されている。
本研究では,オープンソース生成型大規模言語モデル(LLM)をNLIに適用する可能性について検討する。
論文 参考訳(メタデータ) (2024-09-15T08:14:18Z) - An Application of Large Language Models to Coding Negotiation Transcripts [32.95589366933378]
大規模言語モデル(LLM)は、自然言語処理(NLP)の分野で印象的な能力を示している。
本稿では,Vanderbilt AI Negotiation Lab による交渉テキスト解析における LLM の適用について検討する。
論文 参考訳(メタデータ) (2024-07-18T17:05:59Z) - MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series [86.31735321970481]
私たちはMAP-Neoをオープンソースにしました。これは、4.5Tの高品質トークン上で、スクラッチからトレーニングされた7Bパラメータを持つバイリンガル言語モデルです。
MAP-Neo は,既存の最先端 LLM と比較して性能が劣る初の完全オープンソースバイリンガル LLM である。
論文 参考訳(メタデータ) (2024-05-29T17:57:16Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。