論文の概要: Enhancing Knowledge Tracing with Concept Map and Response Disentanglement
- arxiv url: http://arxiv.org/abs/2408.12996v1
- Date: Fri, 23 Aug 2024 11:25:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:20:16.339780
- Title: Enhancing Knowledge Tracing with Concept Map and Response Disentanglement
- Title(参考訳): 概念マップと応答ディスタングルによる知識トラクションの強化
- Authors: Soonwook Park, Donghoon Lee, Hogun Park,
- Abstract要約: 本稿では,知識追跡(CRKT)モデルを強化するための概念マップ駆動型応答不整合法を提案する。
CRKTは、答えの選択を直接活用することでKTに恩恵を与える。
さらに,不整合表現を用いて,学生が選択しない選択肢から洞察を得るアンチョセン応答の新規利用について紹介する。
- 参考スコア(独自算出の注目度): 5.201585012263761
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the rapidly advancing realm of educational technology, it becomes critical to accurately trace and understand student knowledge states. Conventional Knowledge Tracing (KT) models have mainly focused on binary responses (i.e., correct and incorrect answers) to questions. Unfortunately, they largely overlook the essential information in students' actual answer choices, particularly for Multiple Choice Questions (MCQs), which could help reveal each learner's misconceptions or knowledge gaps. To tackle these challenges, we propose the Concept map-driven Response disentanglement method for enhancing Knowledge Tracing (CRKT) model. CRKT benefits KT by directly leveraging answer choices--beyond merely identifying correct or incorrect answers--to distinguish responses with different incorrect choices. We further introduce the novel use of unchosen responses by employing disentangled representations to get insights from options not selected by students. Additionally, CRKT tracks the student's knowledge state at the concept level and encodes the concept map, representing the relationships between them, to better predict unseen concepts. This approach is expected to provide actionable feedback, improving the learning experience. Our comprehensive experiments across multiple datasets demonstrate CRKT's effectiveness, achieving superior performance in prediction accuracy and interpretability over state-of-the-art models.
- Abstract(参考訳): 教育技術の急速に進歩する分野では、学生の知識状態を正確に追跡し理解することが重要である。
従来の知識追跡(KT)モデルは、主に質問に対するバイナリ応答(正解と誤答)に焦点を当てている。
残念なことに、特にMCQ(Multiple Choice Questions)では、学生の実際の回答選択に欠かせない情報を見落としており、学習者の誤解や知識のギャップを明らかにするのに役立つ。
これらの課題に対処するために,概念地図駆動型応答不整合法を提案し,知識追跡(CRKT)モデルを強化する。
CRKTは、答えの選択を直接活用することでKTに恩恵を与える。
さらに,不整合表現を用いて,学生が選択しない選択肢から洞察を得るアンチョセン応答の新規利用について紹介する。
さらに、CRKTは、概念レベルで学生の知識状態を追跡し、概念マップを符号化し、それら間の関係を表現し、目に見えない概念をより正確に予測する。
このアプローチは、実用的なフィードバックを提供し、学習経験を改善することが期待されている。
複数のデータセットにわたる包括的な実験は、CRKTの有効性を示し、最先端モデルよりも予測精度と解釈可能性において優れた性能を実現する。
関連論文リスト
- Automated Knowledge Concept Annotation and Question Representation Learning for Knowledge Tracing [59.480951050911436]
自動知識概念アノテーションと質問表現学習のためのフレームワークであるKCQRLを提案する。
実世界の2つの学習データセット上で、15KTアルゴリズムにまたがるKCQRLの有効性を実証する。
論文 参考訳(メタデータ) (2024-10-02T16:37:19Z) - SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model [64.92472567841105]
知識追跡(KT)は、学生が次の質問に正しく答えるかどうかを判断することを目的としている。
大規模言語モデルを用いた構造認識帰納的知識追跡モデル(SINKT)
SINKTは、学生の知識状態と質問表現とを相互作用させることで、対象の質問に対する学生の反応を予測する。
論文 参考訳(メタデータ) (2024-07-01T12:44:52Z) - Interpretable Knowledge Tracing via Response Influence-based Counterfactual Reasoning [10.80973695116047]
知識追跡は、コンピュータ支援教育と知的学習システムにおいて重要な役割を担っている。
現在のアプローチでは、より説明可能な予測を達成するために心理的影響を調査している。
RCKTは,新しい応答型インフルエンサー・インフルエンサー・インフルエンス・インフルエンサー・ナレッジ・トレース・フレームワークである。
論文 参考訳(メタデータ) (2023-12-01T11:27:08Z) - Do We Fully Understand Students' Knowledge States? Identifying and
Mitigating Answer Bias in Knowledge Tracing [12.31363929361146]
知識追跡は、概念に関連した質問との学習相互作用を通じて、学生の進化する知識状態を監視することを目的としている。
解答バイアスの一般的な現象、すなわち、各質問に対する正解と誤解の高度に不均衡な分布がある。
既存のモデルは、KTで高い予測性能を達成するためのショートカットとして解答バイアスを記憶する傾向がある。
論文 参考訳(メタデータ) (2023-08-15T13:56:29Z) - Distinguish Before Answer: Generating Contrastive Explanation as
Knowledge for Commonsense Question Answering [61.53454387743701]
本稿では,概念中心のPrompt-bAsed Contrastive Explanation GenerationモデルであるCPACEを提案する。
CPACEは、得られたシンボル知識を、与えられた候補間の差異をよりよく区別するために、対照的な説明に変換する。
本稿では,CSQA,QASC,OBQAの3つの質問回答データセットについて実験を行った。
論文 参考訳(メタデータ) (2023-05-14T12:12:24Z) - Quiz-based Knowledge Tracing [61.9152637457605]
知識追跡は、学習相互作用に基づいて個人の進化する知識状態を評価することを目的としている。
QKTは、既存の方法と比較して最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-04-05T12:48:42Z) - Differentiating Student Feedbacks for Knowledge Tracing [5.176190855174938]
本稿では,知識追跡のためのDR4KTを提案する。
再重み付け後の低判別応答に対する高い予測精度を維持するため、DR4KTは識別対応スコア融合技術も導入している。
論文 参考訳(メタデータ) (2022-12-16T13:55:07Z) - Learning Knowledge Representation with Meta Knowledge Distillation for
Single Image Super-Resolution [82.89021683451432]
単一画像超解像課題に対する教師/学生アーキテクチャに基づくモデルに依存しないメタ知識蒸留法を提案する。
種々の単一画像超解像データセットを用いた実験により,提案手法は既存の知識表現関連蒸留法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-07-18T02:41:04Z) - A Unified End-to-End Retriever-Reader Framework for Knowledge-based VQA [67.75989848202343]
本稿では,知識に基づくVQAに向けて,エンド・ツー・エンドのレトリバー・リーダー・フレームワークを提案する。
我々は、視覚言語による事前学習モデルからの多モーダルな暗黙の知識に光を当て、知識推論の可能性を掘り下げた。
提案手法では,知識検索のガイダンスを提供するだけでなく,質問応答に対してエラーが発生しやすいケースも排除できる。
論文 参考訳(メタデータ) (2022-06-30T02:35:04Z) - DISSECT: Disentangled Simultaneous Explanations via Concept Traversals [33.65478845353047]
DISSECTは、ディープラーニングモデル推論を説明するための新しいアプローチである。
DISSECTは、分類器の信号から生成モデルを訓練することにより、異なる概念の分類器固有の「名詞」を発見する方法を提供する。
DISSECTは,複数の概念を分離し,共同訓練による推論と結合したCTを生成する。
論文 参考訳(メタデータ) (2021-05-31T17:11:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。