論文の概要: Differentiating Student Feedbacks for Knowledge Tracing
- arxiv url: http://arxiv.org/abs/2212.14695v1
- Date: Fri, 16 Dec 2022 13:55:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 07:26:01.733864
- Title: Differentiating Student Feedbacks for Knowledge Tracing
- Title(参考訳): 知識追跡のための学生フィードバックの差別化
- Authors: Jiajun Cui, Wei Zhang
- Abstract要約: 本稿では,知識追跡のためのDR4KTを提案する。
再重み付け後の低判別応答に対する高い予測精度を維持するため、DR4KTは識別対応スコア融合技術も導入している。
- 参考スコア(独自算出の注目度): 5.176190855174938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In computer-aided education and intelligent tutoring systems, knowledge
tracing (KT) raises attention due to the development of data-driven learning
methods, which aims to predict students' future performance given their past
question response sequences to trace their knowledge states. However, current
deep learning approaches only focus on enhancing prediction accuracy, but
neglecting the discrimination imbalance of responses. That is, a considerable
proportion of question responses are weak to discriminate students' knowledge
states, but equally considered compared to other discriminative responses, thus
hurting the ability of tracing students' personalized knowledge states. To
tackle this issue, we propose DR4KT for Knowledge Tracing, which reweights the
contribution of different responses according to their discrimination in
training. For retaining high prediction accuracy on low discriminative
responses after reweighting, DR4KT also introduces a discrimination-aware score
fusion technique to make a proper combination between student knowledge mastery
and the questions themselves. Comprehensive experimental results show that our
DR4KT applied on four mainstream KT methods significantly improves their
performance on three widely-used datasets.
- Abstract(参考訳): コンピュータ支援教育と知的学習システムにおいて、知識追跡(KT)は、過去の質問応答列から学習者の将来のパフォーマンスを予測することを目的として、データ駆動学習手法の開発により注目される。
しかし、現在のディープラーニングアプローチでは、予測精度の向上にのみ焦点が当てられている。
つまり、質問応答のかなりの割合は、生徒の知識状態を識別するには弱いが、他の差別的反応と比較すると、生徒のパーソナライズされた知識状態を追跡できない。
この問題に対処するために、訓練における識別に応じて異なる応答の寄与を再重み付けする知識追跡のためのDR4KTを提案する。
再重み付け後の低判別応答に対する高い予測精度を維持するため、DR4KTは、学生の知識熟達と質問そのものを適切に組み合わせるための差別対応スコア融合技術も導入している。
総合的な実験結果から, DR4KTが4つの主流KT法に適用されたことにより, 広く使用されている3つのデータセットの性能が著しく向上することが示された。
関連論文リスト
- Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
大規模言語モデル(LLM)は、その実践的応用でますます認識されている。
Retrieval-Augmented Generation (RAG)はこの課題に取り組み、LLMに大きな影響を与えている。
中立あるいは有害な結果をもたらす検索要求を最小化することにより、時間と計算コストの両方を効果的に削減できる。
論文 参考訳(メタデータ) (2024-11-09T15:12:28Z) - Personalized Knowledge Tracing through Student Representation Reconstruction and Class Imbalance Mitigation [32.52262417461651]
知識追跡とは、学習過程を分析することによって、学生の将来のパフォーマンスを予測する手法である。
近年の研究は、強力なディープニューラルネットワークを活用することで大きな進歩を遂げている。
パーソナライズされた知識追跡のための新しいアプローチであるPKTを提案する。
論文 参考訳(メタデータ) (2024-09-10T07:02:46Z) - Enhancing Knowledge Tracing with Concept Map and Response Disentanglement [5.201585012263761]
本稿では,知識追跡(CRKT)モデルを強化するための概念マップ駆動型応答不整合法を提案する。
CRKTは、答えの選択を直接活用することでKTに恩恵を与える。
さらに,不整合表現を用いて,学生が選択しない選択肢から洞察を得るアンチョセン応答の新規利用について紹介する。
論文 参考訳(メタデータ) (2024-08-23T11:25:56Z) - Explainable Few-shot Knowledge Tracing [48.877979333221326]
本稿では,学生の記録から学生の知識をトラッキングし,自然言語による説明を提供する認知誘導フレームワークを提案する。
3つの広く使われているデータセットによる実験結果から、LLMは競合する深層知識追跡手法に匹敵する、あるいは優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-23T10:07:21Z) - Interpretable Knowledge Tracing via Response Influence-based Counterfactual Reasoning [10.80973695116047]
知識追跡は、コンピュータ支援教育と知的学習システムにおいて重要な役割を担っている。
現在のアプローチでは、より説明可能な予測を達成するために心理的影響を調査している。
RCKTは,新しい応答型インフルエンサー・インフルエンサー・インフルエンス・インフルエンサー・ナレッジ・トレース・フレームワークである。
論文 参考訳(メタデータ) (2023-12-01T11:27:08Z) - Do We Fully Understand Students' Knowledge States? Identifying and
Mitigating Answer Bias in Knowledge Tracing [12.31363929361146]
知識追跡は、概念に関連した質問との学習相互作用を通じて、学生の進化する知識状態を監視することを目的としている。
解答バイアスの一般的な現象、すなわち、各質問に対する正解と誤解の高度に不均衡な分布がある。
既存のモデルは、KTで高い予測性能を達成するためのショートカットとして解答バイアスを記憶する傾向がある。
論文 参考訳(メタデータ) (2023-08-15T13:56:29Z) - Quiz-based Knowledge Tracing [61.9152637457605]
知識追跡は、学習相互作用に基づいて個人の進化する知識状態を評価することを目的としている。
QKTは、既存の方法と比較して最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2023-04-05T12:48:42Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
NERモデルの堅牢性を改善するために,自己学習型教員学生フレームワークを提案する。
本稿では,2つの教員ネットワークからなる適応型教員学習を提案する。
微粒な学生アンサンブルは、教師モデルの各フラグメントを、生徒の対応するフラグメントの時間移動平均で更新し、各モデルフラグメントのノイズに対する一貫した予測を強化する。
論文 参考訳(メタデータ) (2022-12-13T12:14:09Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Interpretable Knowledge Tracing: Simple and Efficient Student Modeling
with Causal Relations [21.74631969428855]
解釈可能な知識追跡(英: Interpretable Knowledge Tracing, IKT)は、3つの有意義な潜在機能に依存する単純なモデルである。
IKTの将来の学生成績予測は、Tree-Augmented Naive Bayes (TAN) を用いて行われる。
IKTは、現実世界の教育システムにおいて、因果推論を用いた適応的でパーソナライズされた指示を提供する大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-12-15T19:05:48Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。