Personalised Medicine: Establishing predictive machine learning models for drug responses in patient derived cell culture
- URL: http://arxiv.org/abs/2408.13012v1
- Date: Fri, 23 Aug 2024 11:58:50 GMT
- Title: Personalised Medicine: Establishing predictive machine learning models for drug responses in patient derived cell culture
- Authors: Abbi Abdel-Rehim, Oghenejokpeme Orhobor, Gareth Griffiths, Larisa Soldatova, Ross D. King,
- Abstract summary: Personalised medicine is often associated with the utilisation of omics data.
An alternative approach to precision medicine is to employ a function-based profile of the cell.
Here we demonstrate a proof-of-concept, where a collection of drug screens against a highly diverse set of patient-derived cell lines, are leveraged to identify putative treatment options for a 'new patient'
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The concept of personalised medicine in cancer therapy is becoming increasingly important. There already exist drugs administered specifically for patients with tumours presenting well-defined mutations. However, the field is still in its infancy, and personalised treatments are far from being standard of care. Personalised medicine is often associated with the utilisation of omics data. Yet, implementation of multi-omics data has proven difficult, due to the variety and scale of the information within the data, as well as the complexity behind the myriad of interactions taking place within the cell. An alternative approach to precision medicine is to employ a function-based profile of the cell. This involves screening a range of drugs against patient derived cells. Here we demonstrate a proof-of-concept, where a collection of drug screens against a highly diverse set of patient-derived cell lines, are leveraged to identify putative treatment options for a 'new patient'. We show that this methodology is highly efficient in ranking the drugs according to their activity towards the target cells. We argue that this approach offers great potential, as activities can be efficiently imputed from various subsets of the drug treated cell lines that do not necessarily originate from the same tissue type.
Related papers
- drGAT: Attention-Guided Gene Assessment of Drug Response Utilizing a Drug-Cell-Gene Heterogeneous Network [9.637695046701493]
drGAT is a graph deep learning model that can predict sensitivity to drugs.
drGAT has superior performance over existing models, achieving 78% accuracy and 76% F1 score for 269 DNA-damaging compounds.
Our method can be used to accurately predict sensitivity to drugs and may be useful in the identification of biomarkers relating to the treatment of cancer patients.
arXiv Detail & Related papers (2024-05-14T22:16:52Z) - WISER: Weak supervISion and supErvised Representation learning to improve drug response prediction in cancer [7.9505208530650995]
Cancer is a leading cause of death globally due to genomic changes and manifests heterogeneously across patients.
variations in the distribution of genomic data and drug responses between cell lines and humans arise due to biological and environmental differences.
Recent cancer drug response prediction methods have largely followed the paradigm of unsupervised domain-invariant representation learning.
This paper addresses these challenges through a novel representation learning method in the first phase and weak supervision in the second.
arXiv Detail & Related papers (2024-05-07T07:21:20Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - Enhancing drug and cell line representations via contrastive learning
for improved anti-cancer drug prioritization [0.7070726553564699]
We propose the use of contrastive learning to improve learned drug and cell line representations.
We find that our learned representations exhibit a more balances reliance on drug- and cell line-derived features when making predictions.
arXiv Detail & Related papers (2023-10-20T04:18:47Z) - Precision Anti-Cancer Drug Selection via Neural Ranking [0.342658286826597]
We propose two neural listwise ranking methods that learn latent representations of drugs and cell lines, and then use those representations to score drugs in each cell line via a learnable scoring function.
Our results demonstrate that List-All outperforms the best baseline with significant improvements of as much as 8.6% in hit@20 across 50% test cell lines.
arXiv Detail & Related papers (2023-06-30T16:23:25Z) - SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Neural Bandits for Data Mining: Searching for Dangerous Polypharmacy [63.135687276599114]
Some polypharmacies, deemed inappropriate, may be associated with adverse health outcomes such as death or hospitalization.
We propose the OptimNeuralTS strategy to efficiently mine claims datasets and build a predictive model of the association between drug combinations and health outcomes.
Our method can detect up to 72% of PIPs while maintaining an average precision score of 99% using 30 000 time steps.
arXiv Detail & Related papers (2022-12-10T03:43:23Z) - CODE-AE: A Coherent De-confounding Autoencoder for Predicting
Patient-Specific Drug Response From Cell Line Transcriptomics [35.67979269269178]
We develop a Coherent Deconfounding Autoencoder (CODE-AE) that can extract both common biological signals shared by incoherent samples and private representations unique to each data set.
CODE-AE significantly improves the accuracy and robustness over state-of-the-art methods in both predicting patient drug response and de-confounding biological signals.
arXiv Detail & Related papers (2021-01-31T21:17:44Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.