Electronic interferometry with ultrashort plasmonic pulses
- URL: http://arxiv.org/abs/2408.13025v1
- Date: Fri, 23 Aug 2024 12:29:02 GMT
- Title: Electronic interferometry with ultrashort plasmonic pulses
- Authors: Seddik Ouacel, Lucas Mazzella, Thomas Kloss, Matteo Aluffi, Thomas Vasselon, Hermann Edlbauer, Junliang Wang, Clement Geffroy, Jashwanth Shaju, Michihisa Yamamoto, David Pomaranski, Shintaro Takada, Nobu-Hisa Kaneko, Giorgos Georgiou, Xavier Waintal, Matias Urdampilleta, Arne Ludwig, Andreas D. Wieck, Hermann Sellier, Christopher Bäuerle,
- Abstract summary: We show that quantum coherence is preserved for ultrashort plasmonic pulses, exhibiting enhanced contrast of coherent oscillations compared to the DC regime.
This milestone demonstrates the feasibility of flying qubits as a promising alternative to localized qubit architectures.
- Score: 0.8141910845471796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electronic flying qubits offer an interesting alternative to photonic qubits: electrons propagate slower, hence easier to control in real time, and Coulomb interaction enables direct entanglement between different qubits. While their coherence time is limited, picosecond-scale control would make them competitive in terms of number of possible coherent operations. The key challenge lies in achieving the dynamical regime, where the injected plasmonic pulse width is shorter than the quantum device dimensions. Here we reach this new regime in a quantum nanoelectronic system by injecting ultrashort single electron plasmonic pulses into a 14-micrometer-long Mach-Zehnder interferometer. Our findings reveal that quantum coherence is preserved for ultrashort plasmonic pulses, exhibiting enhanced contrast of coherent oscillations compared to the DC regime. Moreover, this coherence remains robust even under large bias voltages. This milestone demonstrates the feasibility of flying qubits as a promising alternative to localized qubit architectures, offering reduced hardware footprint, increased connectivity, and potential for scalable quantum information processing.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Spatial Addressing of Qubits in a Dispersive Waveguide [0.0]
We use dispersion to achieve spatial addressing of superconducting qubits separated by a sub-wavelength distance within a microwave waveguide.
This experiment emphasizes the importance of dispersion in the design and analysis of quantum experiments.
arXiv Detail & Related papers (2024-07-15T11:08:34Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Enhancing strontium clock atom interferometry using quantum optimal
control [0.09786690381850353]
We study QOC pulses for strontium clock interferometry and demonstrate their advantage over basic square pulses.
This could improve the scale of large momentum transfer in Sr clock interferometers, paving the way to achieve scientific goals.
arXiv Detail & Related papers (2022-07-26T23:56:33Z) - Efficient electron transfer in quantum dot chains controlled by a cubic
detuning profile via shortcuts to adiabaticity [0.0]
We study theoretically the control of shuttling of an electron along a linear chain of semiconductor quantum dots.
A given fidelity can be set experimentally by controlling the maximum sweep energy and duration of the control pulse.
arXiv Detail & Related papers (2022-06-03T20:23:08Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Fully tunable longitudinal spin-photon interactions in Si and Ge quantum
dots [0.0]
We show that large longitudinal interactions emerge naturally in state-of-the-art hole spin qubits.
We propose realistic protocols to measure these interactions and to implement fast and high-fidelity two-qubit entangling gates.
arXiv Detail & Related papers (2022-03-31T16:36:53Z) - Electronic coherence and coherent dephasing in the optical control of
electrons in graphene [0.0]
Electronic coherence is of utmost importance for the access and control of quantum-mechanical solid-state properties.
We use a purely electronic observable, the photocurrent, to measure an electronic coherence time of 22 +/- 4 fs in graphene.
arXiv Detail & Related papers (2021-07-14T17:03:09Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.