CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points
- URL: http://arxiv.org/abs/2408.13046v1
- Date: Fri, 23 Aug 2024 13:10:06 GMT
- Title: CMA-ES for Discrete and Mixed-Variable Optimization on Sets of Points
- Authors: Kento Uchida, Ryoki Hamano, Masahiro Nomura, Shota Saito, Shinichi Shirakawa,
- Abstract summary: This paper focuses on the optimization on sets of points and proposes an optimization method by extending the covariance matrix adaptation evolution strategy (CMA-ES)
The CMA-ES-SoP incorporates margin correction that maintains the generation probability of neighboring points to prevent premature convergence to a specific non-optimal point.
Numerical simulations demonstrated that the CMA-ES-SoP successfully optimized the optimization problems on sets of points, whereas the naive CMA-ES failed to optimize them due to premature convergence.
- Score: 9.130749109828717
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Discrete and mixed-variable optimization problems have appeared in several real-world applications. Most of the research on mixed-variable optimization considers a mixture of integer and continuous variables, and several integer handlings have been developed to inherit the optimization performance of the continuous optimization methods to mixed-integer optimization. In some applications, acceptable solutions are given by selecting possible points in the disjoint subspaces. This paper focuses on the optimization on sets of points and proposes an optimization method by extending the covariance matrix adaptation evolution strategy (CMA-ES), termed the CMA-ES on sets of points (CMA-ES-SoP). The CMA-ES-SoP incorporates margin correction that maintains the generation probability of neighboring points to prevent premature convergence to a specific non-optimal point, which is an effective integer-handling technique for CMA-ES. In addition, because margin correction with a fixed margin value tends to increase the marginal probabilities for a portion of neighboring points more than necessary, the CMA-ES-SoP updates the target margin value adaptively to make the average of the marginal probabilities close to a predefined target probability. Numerical simulations demonstrated that the CMA-ES-SoP successfully optimized the optimization problems on sets of points, whereas the naive CMA-ES failed to optimize them due to premature convergence.
Related papers
- CatCMA : Stochastic Optimization for Mixed-Category Problems [9.13074910982872]
Black-box optimization problems often require simultaneously optimizing different types of variables, such as continuous, integer, and categorical variables.
Several Bayesian optimization methods can deal with mixed-category black-box optimization (MC-BBO), but they suffer from a lack of scalability to high-dimensional problems and internal computational cost.
This paper proposes CatCMA, a new optimization method for MC-BBO problems.
arXiv Detail & Related papers (2024-05-16T10:11:18Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - (1+1)-CMA-ES with Margin for Discrete and Mixed-Integer Problems [6.181926091202142]
This paper introduces the margin correction into (1+1)-CMA-ES, an elitist version of CMA-ES.
The (1+1)-CMA-ES is often advantageous for unimodal functions and can be computationally less expensive.
The numerical simulation using benchmark functions on mixed-integer, integer, and binary domains shows that (1+1)-CMA-ES with margin outperforms the CMA-ES with margin.
arXiv Detail & Related papers (2023-05-01T14:34:55Z) - Marginal Probability-Based Integer Handling for CMA-ES Tackling
Single-and Multi-Objective Mixed-Integer Black-Box Optimization [10.42820615166362]
We study the mixed-integer black-box optimization (MI-BBO) problem where continuous and integer variables should be optimized simultaneously.
We propose a simple integer handling for the CMA-ES based on lower-bounding the marginal probabilities associated with the generation of integer variables in the MGD.
arXiv Detail & Related papers (2022-12-19T06:08:20Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - CMA-ES with Margin: Lower-Bounding Marginal Probability for
Mixed-Integer Black-Box Optimization [5.237999056930947]
This study targets the mixed-integer black-box optimization (MI-BBO) problem where continuous and integer variables should be optimized simultaneously.
We propose a simple modification of the CMA-ES based on lower-bounding the marginal probabilities associated with the generation of integer variables in the MGD.
arXiv Detail & Related papers (2022-05-26T16:47:56Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
We consider potentially non- optimized approximation problems.
In this paper, we propose an algorithm that achieves close to optimal a priori computational guarantees.
arXiv Detail & Related papers (2022-04-11T09:37:04Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
We propose an efficient parallelizable Bayesian optimization algorithm via Multi-objective ACquisition function Ensemble (MACE)
Our proposed algorithm can reduce the overall simulation time by up to 74 times compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15.
For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to 15 times compared to the weighted expected improvement based Bayesian optimization (WEIBO) approach, when the batch size is 15.
arXiv Detail & Related papers (2021-06-28T13:21:28Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.