論文の概要: Hierarchical Spatio-Temporal State-Space Modeling for fMRI Analysis
- arxiv url: http://arxiv.org/abs/2408.13074v1
- Date: Fri, 23 Aug 2024 13:58:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:00:46.995897
- Title: Hierarchical Spatio-Temporal State-Space Modeling for fMRI Analysis
- Title(参考訳): fMRI解析のための階層的時空間モデル
- Authors: Yuxiang Wei, Anees Abrol, Reihaneh Hassanzadeh, Vince Calhoun,
- Abstract要約: 機能的マンバ(FST-Mamba, FST-Mamba)は,fMRIを用いた神経バイオマーカーの発見を目的とした機能的マンバ(FST-Mamba)モデルである。
脳ネットワーク内の個々のコンポーネント間の接続を集約するコンポーネントワイド・バラエティ・スケール・アグリゲーション(CVA)機構を提案する。
実験結果から,脳の分類と回帰作業におけるFST-Mambaモデルの有効性が示唆された。
- 参考スコア(独自算出の注目度): 1.7329715392023939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep learning structured state space models, especially the Mamba architecture, have demonstrated remarkable performance improvements while maintaining linear complexity. In this study, we introduce functional spatiotemporal Mamba (FST-Mamba), a Mamba-based model designed for discovering neurological biomarkers using functional magnetic resonance imaging (fMRI). We focus on dynamic functional network connectivity (dFNC) derived from fMRI and propose a hierarchical spatiotemporal Mamba-based network that processes spatial and temporal information separately using Mamba-based encoders. Leveraging the topological uniqueness of the FNC matrix, we introduce a component-wise varied-scale aggregation (CVA) mechanism to aggregate connectivity across individual components within brain networks, enabling the model to capture both inter-component and inter-network information. To better handle the FNC data, we develop a new component-specific scanning order. Additionally, we propose symmetric rotary position encoding (SymRope) to encode the relative positions of each functional connection while considering the symmetric nature of the FNC matrix. Experimental results demonstrate significant improvements in the proposed FST-Mamba model on various brain-based classification and regression tasks. Our work reveals the substantial potential of attention-free sequence modeling in brain discovery.
- Abstract(参考訳): 近年のディープラーニング構造化状態空間モデル,特にMambaアーキテクチャの進歩は,線形複雑性を維持しながら顕著な性能向上を示した。
本研究では,機能的磁気共鳴画像(fMRI)を用いた神経バイオマーカーの発見を目的とした,機能的時空間マンバ(FST-Mamba)モデルを提案する。
本稿では,fMRIから導出される動的機能的ネットワーク接続(dFNC)に着目し,空間情報と時間情報を個別に処理する階層型時空間マンバネットワークを提案する。
FNC行列のトポロジ的特異性を活用することで、脳ネットワーク内の個々のコンポーネント間の接続を集約し、コンポーネント間およびネットワーク間の情報の両方を捕捉するコンポーネントワイド・スケール・アグリゲーション(CVA)機構を導入する。
FNCデータをよりよく処理するために、我々は新しいコンポーネント固有の走査順序を開発する。
さらに、FNC行列の対称性を考慮して、各機能接続の相対位置を符号化する対称回転位置符号化(SymRope)を提案する。
実験結果から,脳の分類と回帰作業におけるFST-Mambaモデルの有効性が示唆された。
我々の研究は、脳発見における注意のないシーケンスモデリングの可能性を明らかにしている。
関連論文リスト
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Mamba-Spike: Enhancing the Mamba Architecture with a Spiking Front-End for Efficient Temporal Data Processing [4.673285689826945]
Mamba-Spikeは、スパイクするフロントエンドとMambaのバックボーンを統合して、効率的な時間的データ処理を実現する新しいニューロモルフィックアーキテクチャである。
このアーキテクチャは、最先端のベースラインを一貫して上回り、高い精度、低いレイテンシ、エネルギー効率の向上を実現している。
論文 参考訳(メタデータ) (2024-08-04T14:10:33Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - FER-YOLO-Mamba: Facial Expression Detection and Classification Based on Selective State Space [9.68374853606234]
本稿では,マンバとヨロの原理を統合したFER-YOLO-Mambaモデルを提案する。
FER-YOLO-Mambaモデルでは,局所特徴抽出における畳み込み層固有の強度を組み合わせたFER-YOLO-VSSデュアルブランチモジュールをさらに考案する。
私たちの知る限りでは、顔の表情検出と分類のために設計された最初のVision Mambaモデルである。
論文 参考訳(メタデータ) (2024-05-03T03:20:37Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
グラフ畳み込みネットワーク(GCN)は骨格に基づく行動認識において広く採用されている。
近年提案されている骨格に基づく行動認識法の性能は以下の要因によって制限されていると論じる。
近年の注目機構に着想を得て,アクション関連関係情報を取得するためのマルチグラインド・コンテキスト集中モジュール MCF を提案する。
論文 参考訳(メタデータ) (2022-03-31T02:45:24Z) - Multi-Scale Semantics-Guided Neural Networks for Efficient
Skeleton-Based Human Action Recognition [140.18376685167857]
スケルトンに基づく行動認識には,単純なマルチスケールセマンティクス誘導ニューラルネットワークが提案されている。
MS-SGNは、NTU60、NTU120、SYSUデータセットの最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2021-11-07T03:50:50Z) - Identification of brain states, transitions, and communities using
functional MRI [0.5872014229110214]
ベイズモデルに基づく潜在脳状態のキャラクタリゼーションを提案し,後方予測の不一致に基づく新しい手法を提案する。
タスク-fMRIデータの解析により得られた結果は、外部タスク要求と脳状態間の変化点の間の適切な遅延を示す。
論文 参考訳(メタデータ) (2021-01-26T08:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。