論文の概要: Core-Periphery Principle Guided State Space Model for Functional Connectome Classification
- arxiv url: http://arxiv.org/abs/2503.14655v1
- Date: Tue, 18 Mar 2025 19:03:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:24:35.063425
- Title: Core-Periphery Principle Guided State Space Model for Functional Connectome Classification
- Title(参考訳): 機能的コネクトーム分類のためのコア周辺原理誘導状態空間モデル
- Authors: Minheng Chen, Xiaowei Yu, Jing Zhang, Tong Chen, Chao Cao, Yan Zhuang, Yanjun Lyu, Lu Zhang, Tianming Liu, Dajiang Zhu,
- Abstract要約: Core-Periphery State-Space Model (CP-SSM)は、関数コネクトーム分類のための革新的なフレームワークである。
線形複雑性を持つ選択状態空間モデルであるMambaは、機能的脳ネットワークにおける長距離依存関係を効果的にキャプチャする。
CP-SSMは、計算複雑性を著しく低減しつつ、分類性能においてTransformerベースのモデルを上回る。
- 参考スコア(独自算出の注目度): 30.044545011553172
- License:
- Abstract: Understanding the organization of human brain networks has become a central focus in neuroscience, particularly in the study of functional connectivity, which plays a crucial role in diagnosing neurological disorders. Advances in functional magnetic resonance imaging and machine learning techniques have significantly improved brain network analysis. However, traditional machine learning approaches struggle to capture the complex relationships between brain regions, while deep learning methods, particularly Transformer-based models, face computational challenges due to their quadratic complexity in long-sequence modeling. To address these limitations, we propose a Core-Periphery State-Space Model (CP-SSM), an innovative framework for functional connectome classification. Specifically, we introduce Mamba, a selective state-space model with linear complexity, to effectively capture long-range dependencies in functional brain networks. Furthermore, inspired by the core-periphery (CP) organization, a fundamental characteristic of brain networks that enhances efficient information transmission, we design CP-MoE, a CP-guided Mixture-of-Experts that improves the representation learning of brain connectivity patterns. We evaluate CP-SSM on two benchmark fMRI datasets: ABIDE and ADNI. Experimental results demonstrate that CP-SSM surpasses Transformer-based models in classification performance while significantly reducing computational complexity. These findings highlight the effectiveness and efficiency of CP-SSM in modeling brain functional connectivity, offering a promising direction for neuroimaging-based neurological disease diagnosis.
- Abstract(参考訳): 人間の脳ネットワークの組織を理解することは神経科学、特に機能的接続の研究の中心となり、神経疾患の診断において重要な役割を担っている。
機能的磁気共鳴イメージングと機械学習技術の進歩は、脳ネットワーク分析を著しく改善した。
しかし、従来の機械学習アプローチは脳領域間の複雑な関係を捉えるのに苦労する一方で、ディープラーニング手法、特にトランスフォーマーベースのモデルでは、長いシーケンスモデリングにおける二次的な複雑さのために計算上の課題に直面している。
これらの制約に対処するために,機能的コネクトーム分類のための革新的なフレームワークであるCP-SSM(Core-Periphery State-Space Model)を提案する。
具体的には、線形複雑度を持つ選択状態空間モデルであるMambaを導入し、機能的脳ネットワークにおける長距離依存性を効果的に捉える。
さらに、効率的な情報伝達を促進する脳ネットワークの基本的特徴であるCP(core-periphery)組織に着想を得て、我々は、脳接続パターンの表現学習を改善するCP-MoE(CP-guided Mixture-of-Experts)を設計する。
ABIDEとADNIの2つのベンチマークfMRIデータセットでCP-SSMを評価した。
実験の結果,CP-SSMはTransformerベースのモデルよりも計算複雑性を著しく低減し,分類性能が向上した。
これらの知見は,脳の機能的接続のモデル化におけるCP-SSMの有効性と有効性を強調し,神経画像に基づく神経疾患の診断に有望な方向を提供する。
関連論文リスト
- BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
本稿では,脳ネットワークにおける複数の活性化経路を学習するための新しいフレームワークであるBrainMAPを紹介する。
本フレームワークは,タスクに関わる重要な脳領域の説明的分析を可能にする。
論文 参考訳(メタデータ) (2024-12-23T09:13:35Z) - Generative forecasting of brain activity enhances Alzheimer's classification and interpretation [16.09844316281377]
静止状態機能型磁気共鳴イメージング(rs-fMRI)は、神経活動を監視する非侵襲的な方法を提供する。
深層学習はこれらの表現を捉えることを約束している。
本研究では,データ拡張の一形態として,rs-fMRIから派生した独立成分ネットワークの時系列予測に着目した。
論文 参考訳(メタデータ) (2024-10-30T23:51:31Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
人間の脳は長い間人工知能(AI)の追求にインスピレーションを与えてきた
最近のニューロイメージング研究は、人工ニューラルネットワーク(ANN)の計算的表現と、人間の脳の刺激に対する神経反応との整合性の説得力のある証拠を提供する。
本研究では、人工ニューロンのサブグループと機能的脳ネットワーク(FBN)を直接結合することで、このギャップを埋める。
このフレームワークはANサブグループをFBNにリンクし、大きな言語モデル(LLM)内で脳に似た機能的組織を記述できる。
論文 参考訳(メタデータ) (2024-10-25T13:15:17Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
本稿では,fMRI時系列データから直接表現を学習するBrain Masked Auto-Encoder(BrainMAE)を提案する。
BrainMAEは、4つの異なる下流タスクにおいて、確立されたベースラインメソッドをかなりのマージンで一貫して上回っている。
論文 参考訳(メタデータ) (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
本稿では,階層型クラスタ同定と脳ネットワーク分類のための新しい解釈可能なトランスフォーマーモデルを提案する。
階層的クラスタリング(hierarchical clustering)の助けを借りて、このモデルは精度の向上と実行時の複雑性の低減を実現し、脳領域の機能的構造に関する明確な洞察を提供する。
論文 参考訳(メタデータ) (2023-05-06T22:14:13Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
脳ネットワーク上のグラフマイニングは、臨床表現型および神経変性疾患のための新しいバイオマーカーの発見を促進する可能性がある。
本稿では,Deep Signed Brain Networks (DSBN) と呼ばれる新しいグラフ学習フレームワークを提案する。
臨床表現型および神経変性疾患予測の枠組みを,2つの独立した公開データセットを用いて検証した。
論文 参考訳(メタデータ) (2022-05-06T03:45:36Z) - Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics
Organized by Astrocyte-modulated Plasticity [0.0]
液体状態機械(LSM)は勾配のバックプロパゲーションなしで内部重量を調整する。
近年の知見は、アストロサイトがシナプスの可塑性と脳のダイナミクスを調節していることを示唆している。
本稿では, 自己組織的近接臨界力学を用いて, 性能の低いニューロン-アストロサイト液状状態機械 (NALSM) を提案する。
論文 参考訳(メタデータ) (2021-10-26T23:04:40Z) - On the Self-Repair Role of Astrocytes in STDP Enabled Unsupervised SNNs [1.0009912692042526]
この研究は、ニューロンとシナプスの計算モデルに対する現在のニューロモルフィックコンピューティングアーキテクチャの焦点を越えている。
スパイクタイミング依存塑性(STDP)を用いた教師なし学習によるスパイクニューラルネットワークの耐故障能におけるグリア細胞の役割について検討する。
MNISTデータセットとFashion-MNISTデータセットで提案した提案を,50%から90%までのさまざまな障害度を持つネットワークで実現可能な自己修復の程度を特徴付ける。
論文 参考訳(メタデータ) (2020-09-08T01:14:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。