Diffusion-based Episodes Augmentation for Offline Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2408.13092v1
- Date: Fri, 23 Aug 2024 14:17:17 GMT
- Title: Diffusion-based Episodes Augmentation for Offline Multi-Agent Reinforcement Learning
- Authors: Jihwan Oh, Sungnyun Kim, Gahee Kim, Sunghwan Kim, Se-Young Yun,
- Abstract summary: offline multi-agent reinforcement learning (MARL) is increasingly recognized as crucial for effectively deploying RL algorithms in environments where real-time interaction is impractical, risky, or costly.
We present EAQ, Episodes Augmentation guided by Q-total loss, a novel approach for offline MARL framework utilizing diffusion models.
- Score: 24.501511979962746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Offline multi-agent reinforcement learning (MARL) is increasingly recognized as crucial for effectively deploying RL algorithms in environments where real-time interaction is impractical, risky, or costly. In the offline setting, learning from a static dataset of past interactions allows for the development of robust and safe policies without the need for live data collection, which can be fraught with challenges. Building on this foundational importance, we present EAQ, Episodes Augmentation guided by Q-total loss, a novel approach for offline MARL framework utilizing diffusion models. EAQ integrates the Q-total function directly into the diffusion model as a guidance to maximize the global returns in an episode, eliminating the need for separate training. Our focus primarily lies on cooperative scenarios, where agents are required to act collectively towards achieving a shared goal-essentially, maximizing global returns. Consequently, we demonstrate that our episodes augmentation in a collaborative manner significantly boosts offline MARL algorithm compared to the original dataset, improving the normalized return by +17.3% and +12.9% for medium and poor behavioral policies in SMAC simulator, respectively.
Related papers
- ComaDICE: Offline Cooperative Multi-Agent Reinforcement Learning with Stationary Distribution Shift Regularization [11.620274237352026]
offline reinforcement learning (RL) has garnered significant attention for its ability to learn effective policies from pre-collected datasets.
MARL presents additional challenges due to the large joint state-action space and the complexity of multi-agent behaviors.
We introduce a regularizer in the space of stationary distributions to better handle distributional shift.
arXiv Detail & Related papers (2024-10-02T18:56:10Z) - Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
We propose a framework that enhances PPO algorithms by incorporating a diffusion model to generate high-quality virtual trajectories for offline datasets.
Our contributions are threefold: we explore the potential of diffusion models in RL, particularly for offline datasets, extend the application of online RL to offline environments, and experimentally validate the performance improvements of PPO with diffusion models.
arXiv Detail & Related papers (2024-09-02T19:10:32Z) - AlberDICE: Addressing Out-Of-Distribution Joint Actions in Offline
Multi-Agent RL via Alternating Stationary Distribution Correction Estimation [65.4532392602682]
One of the main challenges in offline Reinforcement Learning (RL) is the distribution shift that arises from the learned policy deviating from the data collection policy.
This is often addressed by avoiding out-of-distribution (OOD) actions during policy improvement as their presence can lead to substantial performance degradation.
We introduce AlberDICE, an offline MARL algorithm that performs centralized training of individual agents based on stationary distribution optimization.
arXiv Detail & Related papers (2023-11-03T18:56:48Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Offline Multi-Agent Reinforcement Learning with Implicit Global-to-Local
Value Regularization [23.416448404647305]
OMIGA is a new offline m ulti-agent RL algorithm with implicit global-to-local v alue regularization.
We show that OMIGA achieves superior performance over the state-of-the-art offline MARL methods in almost all tasks.
arXiv Detail & Related papers (2023-07-21T14:37:54Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
offline multi-agent reinforcement learning (MARL) aims to learn effective multi-agent policies from pre-collected datasets.
One agent learned by offline MARL often inherits this random policy, jeopardizing the performance of the entire team.
We propose a novel framework called Shared Individual Trajectories (SIT) to address this problem.
arXiv Detail & Related papers (2022-11-28T18:11:26Z) - Offline Reinforcement Learning with Adaptive Behavior Regularization [1.491109220586182]
offline reinforcement learning (RL) defines a sample-efficient learning paradigm, where a policy is learned from static and previously collected datasets.
We propose a novel approach, which we refer to as adaptive behavior regularization (ABR)
ABR enables the policy to adaptively adjust its optimization objective between cloning and improving over the policy used to generate the dataset.
arXiv Detail & Related papers (2022-11-15T15:59:11Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
We introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE)
MABE is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary.
In experiments that require cross-domain generalization, we find that MABE outperforms prior methods.
arXiv Detail & Related papers (2021-06-16T20:48:49Z) - Critic Regularized Regression [70.8487887738354]
We propose a novel offline RL algorithm to learn policies from data using a form of critic-regularized regression (CRR)
We find that CRR performs surprisingly well and scales to tasks with high-dimensional state and action spaces.
arXiv Detail & Related papers (2020-06-26T17:50:26Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.